1、人教版七年级数学下册期末综合复习题一、选择题1下列四个图形中,和是内错角的是( )ABCD2下列对象中不属于平移的是( )A在平坦雪地上滑行的滑雪运动员B上上下下地迎送来客的电梯C一棵倒映在湖中的树D在笔直的铁轨上飞驰而过的火车3下列各点中,在第三象限的点是( )ABCD4有下列四个命题:对顶角相等;同位角相等;两点之间,直线最短;连接直线外一点与直线上各点的所有线段中,垂线段最短其中是真命题的个数有( )A0个B1个C2个D3个5直线,则( ) A15B25C35D206下列等式正确的是()ABCD7如图1,则;如图2,则;如图3,则;如图4,直线,点O在直线EF上,则以上结论正确的个数是(
2、 )A1个B2个C3个D4个8如图,在平面直角坐标系中,点A1,A2,A3,A4,A5,A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),按此规律排列,则点A2021的坐标是()A B C D 九、填空题9的算术平方根是_十、填空题10已知点A(2a+3b,2)和点B(8,3a+1)关于y轴对称,那么a+b_十一、填空题11如图,AD是ABC的角平分线,DEAB,垂足为E,若ABC的面积为15,DE3,AB6,则AC的长是 _ 十二、填空题12如图,直线ABCD,OAOB,若1=140,则2=_度十三、填空题13如图,将一张长方形纸
3、片沿折叠后,点,分别落在,的位置,若,则的度数为_十四、填空题14定义:对任何有理数,都有,若已知=0,则=_十五、填空题15在平面直角坐标系中,有点A(a2,a),过点A作ABx轴,交x轴于点B,且AB2,则点A的坐标是_十六、填空题16在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为_十七、解答题17(1)计算(2)计算:十八、解答题18求下列各式中x的值:(1)9x2250;(2)(x3)3270十九、解答题19完成下面的证明如图,已知ADBC,EFBC,12,求证:BAC+AGD180
4、证明:ADBC,EFBC(已知),EFB90,ADB90( ),EFBADB(等量代换),EFAD( ),1BAD( ),又12(已知),2 (等量代换),DGBA(内错角相等,两直线平行),BAC+AGD180( )二十、解答题20如图,在平面直角坐标系中,的三个顶点的坐标分别是,(1)求出的面积;(2)平移,若点的对应点的坐标为,画出平移后对应的,写出坐标二十一、解答题21阅读下面文字:我们知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上小明的表示法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:
5、由“平方与开平方互为逆运算”可知:,即,的整数部分是2,小数部分是(1)的整数部分是_,小数部分是_;(2)如果的小数部分是a,整数部分是b,求的值;(3)已知,其中x是整数,且,求二十二、解答题22动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸我们可以按图2的虚线将它剪开后,重新拼成一个大正方形(1)基础巩固:拼成的大正方形的面积为_,边长为_;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是_;(3)变式拓展:如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方
6、形吗?若能,请在图中画出示意图;请你利用中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数二十三、解答题23如图,已知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围二十四、解答题24已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_,_(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合
7、的过程中,当线段与的一条边平行时,请直接写出的度数二十五、解答题25已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数【参考答案】一、选择题1C解析:C【分析】根据内错角的概念:处于两条被截直线之间,截线的两侧,再逐一判断即可【详解】解:A、1与2不是内错角,选项错误,不符合题意;B、1与2不是内错角,选项错误,不符合题意;C、1与2是内错角,选项正确,符合题意;D、1和2不是内错角,选项错误,不符合题意;故选:C【点睛】本题考查了内错角,关键是根据内错
8、角的概念解答注意:内错角的边构成“Z”形2C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移解析:C【分析】根据平移的性质,对选项进行一一分析,利用排除法求解【详解】解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;故选:C【点睛】本题考查了图形的平移,图形的平移只改变图
9、形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称3D【分析】应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标【详解】解:第三象限的点的横坐标是负数,纵坐标也是负数,结合选项符合第三象限的点是(-2,-4)故选:D【点睛】本题主要考查了点在第三象限内点的坐标的符号特点四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4C【分析】根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可【详解】解:对顶角相等,原命题是真命题;两直线平行,同位角相等,不是真命题;两点之间,线段最短,原命题不是真命题;直线外
10、一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题故选:C【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理5A【分析】分别过A、B作直线的平行线AD、BC,根据平行线的性质即可完成【详解】分别过A、B作直线AD、BC,如图所示,则ADBCBCCBF=2ADEAD=1=15DAB=EAB-EAD=125-15=110ADBCDAB+ABC=180ABC=180-DAB=180-110=70 CBF=ABF-ABC=85-70=152=15故选:A【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线6C【分析】
11、根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B、表示计算算术平方根,所以,故错误C、,故正确D、,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7B【分析】如图1所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,C+CEF=180,则A+C+AEC=360,故错误;如图2所示,过点P作PE/AB,由平行线的性质即可得到A=APE=180,C=CPE,再由APC=APE=CPE,即可得到APC=A-C,即可判断;如图3所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,1=CEF,再由
12、AEF+CEF=AEC,即可判断 ;由平行线的性质即可得到,再由,即可判断【详解】解:如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,C+CEF=180,A+AEF+C+CEF=360,又AEF+CEF=AEC,A+C+AEC=360,故错误;如图所示,过点P作PE/AB,AB/CD,AB/CD/PE,A=APE=180,C=CPE,又APC=APE=CPE,APC=A-C,故正确;如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,1=CEF,又AEF+CEF=AEC,180-A+1=AEC,故错误;,故正确;故选B【点睛】本题主要
13、考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8A【分析】根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5解析:A【分析】根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),的横坐标为2,纵坐标为0,的横坐标为,纵坐标为0,以此类推,的横坐标为,纵坐标为0,的坐标为,的坐标为故选:A【点睛】本题考查了点
14、的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律九、填空题92【分析】先求出=4,再求出算术平方根即可【详解】解:=4,的算术平方根是2,故答案为:2【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力解析:2【分析】先求出=4,再求出算术平方根即可【详解】解:=4,的算术平方根是2,故答案为:2【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力十、填空题10-3【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变据此可得a,b的值【详解】解:点A(2a+3b,2)和点B(8,3a+1)关于y轴对称,解得,a+b解析:-3【分析】关于y
15、轴对称点的坐标特点:横坐标互为相反数,纵坐标不变据此可得a,b的值【详解】解:点A(2a+3b,2)和点B(8,3a+1)关于y轴对称,解得,a+b3,故答案为:3【点睛】本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键十一、填空题114【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是AB解析:4【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是AB
16、C的角平分线,DFAC, DEAB,DE=DF,又三角形的面积的,即,解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.十二、填空题1250【分析】先根据垂直的定义得出O=90,再由三角形外角的性质得出3=1O=50,然后根据平行线的性质可求2【详解】OAOB,O=90,1=3+O=1解析:50【分析】先根据垂直的定义得出O=90,再由三角形外角的性质得出3=1O=50,然后根据平行线的性质可求2【详解】OAOB,O=90,1=3+O=140,3=1O=14090=50,ABCD,2=3=50,故答案为:50【点睛】此题主要考查三角形外角
17、的性质以及平行线的性质,熟练掌握,即可解题.十三、填空题1350【分析】先根据平行线的性质得出DEF的度数,再根据翻折变换的性质得出DEF的度数,根据平角的定义即可得出结论【详解】解:ADBC,EFB65,DEF65,解析:50【分析】先根据平行线的性质得出DEF的度数,再根据翻折变换的性质得出DEF的度数,根据平角的定义即可得出结论【详解】解:ADBC,EFB65,DEF65,又DEFDEF,DEF65,AED50故答案是:50【点睛】本题考查的是折叠的性质以及平行线的性质,用到的知识点为:两直线平行,内错角相等十四、填空题14【分析】先求出a,b的值,2和-3分别代表新运算中的a、b,把a
18、、b的值代入所给的式子即可求值【详解】解:=0,a=2,b= -3, =4-6+9=7,故答案为:7【点睛】解析:【分析】先求出a,b的值,2和-3分别代表新运算中的a、b,把a、b的值代入所给的式子即可求值【详解】解:=0,a=2,b= -3, =4-6+9=7,故答案为:7【点睛】本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果解题的关键是对号入座不要找错对应关系十五、填空题15(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),A解析:(0,2)、
19、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),ABx轴,AB2,|a|2,a2,当a2时,a20;当a2时,a24点A的坐标是(0,2)、(4,2)故答案为:(0,2)、(4,2)【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键十六、填空题16【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后解析
20、:【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后利用202145051可判断点P2021的坐标与点P1的坐标相同【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,-1),点P5的坐标为(2,0),而20214505+1,所以点P2021的坐标与点P1的坐标相同,为(2,0),故答案为:【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键十七、解答题17(1
21、);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可【详解】解解析:(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可【详解】解:(1) ;(2) 【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则十八、解答题18(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;
22、(2)移项后开立方,再移项运算即可【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可【详解】(1)解:(2)解:【点睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键十九、解答题19垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平
23、行,同旁内角互补【分析】先由垂直的定义得出两个90的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到,再根据等量代换得出,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定【详解】解:ADBC,EFBC(已知),EFB90,ADB90(垂直的定义),EFBADB(等量代换),EFAD(同位角相等,两直线平行),1BAD(两直线平行,同位角相等),又12(已知),2BAD(等量代换),DGBA(内错角相等,两直线平行),BAC+AGD180(两直线平行,同旁内角互补)故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD;两直线平行,同
24、旁内角互补【点睛】本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键二十、解答题20(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)在平面直角坐标系中,的三个顶点的坐标分别是,AC=3,BC=2,;(2
25、)A(-3,2),A2(0,-2),A2是由A向右平移3个单位得到的,向下平移4个单位长度得到的,B2,C2的坐标分别为(3,0),(3,-2),如图所示,即为所求【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解二十一、解答题21(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出
26、和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出即可【详解】解:(1),34,的整数部分是3,小数部分是-3,故答案为:3,-3;(2),23,67,a=-2,b=6,;(3)12,1112,x=11,y=,【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键二十二、解答题22(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,;(2);(3)见解
27、析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以23的长方形的对角线为边长即可画出图形;(4)得到中正方形的边长,再利用实数与数轴的关系可画出图形【详解】解:(1)图1中有10个小正方形,面积为10,边长AD为;(2)BC=,点B表示的数为-1,BE=,点E表示的数为;(3)如图所示:正方形面积为13,边长为,如图,点E表示面积为13的正方形边长【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的
28、关键二十三、解答题23(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据解析:(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质,熟记平行线的性质
29、及作出合理的辅助线是解题的关键二十四、解答题24(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BCDE时,当BCEF时,当BCDF时,三种情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=BAC,DEA=+BAC,= DEA -BAC=60
30、-45=15,E、C、A三点共线,=180-DFE=180-30=150;故答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DFE=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=45+30-45=30;当BCEF时,如图2,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,ACDE,CAN=DEG=15,BAM=MAN-C
31、AN-BAC=180-15-45=120综上所述,BAM的度数为30或90或120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点二十五、解答题25(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得出结论【详解】解:(1),;(2)由(1)知,;(3)当时,如图3,由(1)知,;当时,如图4,点,重合,由(1)知,即当以、为顶点的三角形是直角三角形时,度数为或【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键