收藏 分销(赏)

人教版中学七年级数学下册期末复习卷含答案大全.doc

上传人:天**** 文档编号:1772218 上传时间:2024-05-09 格式:DOC 页数:27 大小:596.54KB 下载积分:10 金币
下载 相关 举报
人教版中学七年级数学下册期末复习卷含答案大全.doc_第1页
第1页 / 共27页
人教版中学七年级数学下册期末复习卷含答案大全.doc_第2页
第2页 / 共27页


点击查看更多>>
资源描述
人教版中学七年级数学下册期末复习卷含答案大全 一、选择题 1.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( ) A.∠2 和∠4 B.∠6和∠4 C.∠2 和∠6 D.∠6和∠3 2.在下列图形中,不能通过其中一个三角形平移得到的是( ) A. B. C. D. 3.在平面直角坐标系中,点(-1,-3)位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列给出四个命题:①如果两个角相等,那么它们是对顶角;②如果两个角互为邻补角,那么它们的平分线互相垂直;③如果两条直线垂直于同一条直线,那么这两条直线平行;④如果两条直线平行于同一条直线,那么这两条直线平行.其中为假命题的是(  ) A.① B.①② C.①③ D.①②③④ 5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( ) A. B. C. D. 6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( ) A. B. C.2 D.3 7.如图,直线l1∥l2且与直线l3相交于A、C两点.过点A作AD⊥AC交直线l2于点D.若∠BAD=35°,则∠ACD=(  ) A.35° B.45° C.55° D.70° 8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( ) A.(6,4) B.(6,5) C.(7,3) D.(7,5) 九、填空题 9.若+=0,则xy=__________. 十、填空题 10.点关于轴的对称点的坐标为______. 十一、填空题 11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°. 十二、填空题 12.如图,已知a//b,∠1=50°,∠2=115°,则∠3=______. 十三、填空题 13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___. 十四、填空题 14.对于正数x规定,例如:,则f (2020)+f (2019)+……+f (2)+f (1)+=___________ 十五、填空题 15.已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是__. 十六、填空题 16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A出发,沿着A→B→C→D→A→B→...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___. 十七、解答题 17.计算. (1); (2). 十八、解答题 18.求下列各式中x的值. (1)4x2﹣25=0; (2)(2x﹣1)3=﹣64. 十九、解答题 19.如图,三角形中,点,分别是,上的点,且,. (1)求证:;(完成以下填空) 证明:(已知) (______________), 又(已知) (等量代换), (_______________). (2)与的平分线交于点,交于点, ①若,,则_______; ②已知,求.(用含的式子表示) 二十、解答题 20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,. (1)将向右平移4个单位长度得到,画出平移后的; (2)将向下平移5个单位长度得到,画出平移后的; (3)直接写出三角形的面积为______平方单位.(直接写出结果) 二十一、解答题 21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分. 请解答下列问题: (1)的整数部分是____,小数部分是_____. (2)如果的小数部分是a,的整数部分是b,求的值. (3)已知,其中x是正整数,,求的相反数. 二十二、解答题 22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽; (2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由. 二十三、解答题 23.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F. (1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数; (2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数; (3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系 二十四、解答题 24.如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足. (1)点的坐标为______;点的坐标为______. (2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束.的中点的坐标是,设运动时间为.问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由. (3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由. 二十五、解答题 25.(生活常识) 射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 . (现象解释) 如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD. (尝试探究) 如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小. (深入思考) 如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果) 【参考答案】 一、选择题 1.A 解析:A 【分析】 同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案. 【详解】 解:∵直线AD,BE被直线BF和AC所截, ∴∠1与∠2是同位角,∠5与∠4是内错角, 故选A. 【点睛】 本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义. 2.D 【分析】 根据平移的性质即可得出结论. 【详解】 解:A、能通过其中一个三角形平移得到,不合题意; B、能通过其中一个三角形平移得到,不合题意; C、能通过其中一个三角形平移得到,不合题意; D 解析:D 【分析】 根据平移的性质即可得出结论. 【详解】 解:A、能通过其中一个三角形平移得到,不合题意; B、能通过其中一个三角形平移得到,不合题意; C、能通过其中一个三角形平移得到,不合题意; D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意. 故选:D. 【点睛】 本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键. 3.C 【分析】 根据平面直角坐标系中象限内点的特征判断即可; 【详解】 ∵,, ∴点(-1,-3)位于第三象限; 故选C. 【点睛】 本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键. 4.C 【分析】 根据两个相等的角不一定是对顶角对①进行判定,根据邻补角与角平分线的性质对②进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对③进行判断,根据平行线的判定对④进行判断. 【详解】 解:①如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意; ②如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意; ③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意; ④如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意; 故选:C. 【点睛】 本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 5.D 【分析】 由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1. 【详解】 解:由题意得:AG∥BE∥CD,CF∥BD, ∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180° ∴∠CFB=∠CDB ∴∠CAG=∠CDB 由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180° ∴∠CAG=∠CDB=∠1+∠BAG=2α ∴∠2=180°-2∠BDC=180°-4α 故选D. 【点睛】 本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解. 6.A 【分析】 根据计算程序图计算即可. 【详解】 解:∵当x=64时,,,2是有理数, ∴当x=2时,算术平方根为是无理数, ∴y=, 故选:A. 【点睛】 此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键. 7.C 【分析】 由题意易得∠CAD=90°,则有∠CAB=125°,然后根据平行线的性质可求解. 【详解】 解:∵AD⊥AC, ∴∠CAD=90°, ∵∠BAD=35°, ∴∠CAB=∠BAD+∠CAD=125°, ∵l1∥l2, ∴∠ACD+∠CAB=180°, ∴∠ACD=55°; 故选C. 【点睛】 本题主要考查垂线的定义及平行线的性质,熟练掌握垂线的定义及平行线的性质是解题的关键. 8.A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详 解析:A 【分析】 横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数. 【详解】 解:把第一个点作为第一列,和作为第二列, 依此类推,则第一列有一个数,第二列有2个数, 第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上. 因为,则第20个数一定在第6列,由下到上是第4个数. 因而第20个点的坐标是. 故选:A. 【点睛】 本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目. 九、填空题 9.16 【分析】 根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解. 【详解】 ∵+=0, ∴x−8=0,y−2=0, ∴x=8,y=2, ∴xy=. 故答案为16. 【点睛】 解析:16 【分析】 根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解. 【详解】 ∵+=0, ∴x−8=0,y−2=0, ∴x=8,y=2, ∴xy=. 故答案为16. 【点睛】 本题考查非负数的性质:算术平方根,解题的关键是掌握算术平方根具有双重非负性:(1)被开方数a是非负数,即a≥0;(2)算术平方根本身是非负数,即≥0. 十、填空题 10.【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点 解析: 【分析】 关于y轴对称的点,纵坐标相同,横坐标互为相反数. 【详解】 ∵关于y轴对称的点,纵坐标相同,横坐标互为相反数 ∴点关于y轴的对称点的坐标为. 故答案为: 【点睛】 考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键. 十一、填空题 11.10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=1 解析:10 【分析】 根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可. 【详解】 解:∵∠B=50°,∠C=70°, ∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°, ∵AD是角平分线, ∴∠BAD=∠BAC=×60°=30°, ∵AE是高, ∴∠BAE=90°-∠B=90°-50°=40°, ∴∠DAE=∠BAE-∠BAD=40°-30°=10°. 故答案为:10. 【点睛】 本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 十二、填空题 12.65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, 解析:65° 【分析】 根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解. 【详解】 解:如图: ∵a//b,∠1=50°, ∴∠4=∠1=50°, ∵∠2=115°,∠2=∠3+∠4, ∴∠3=∠2﹣∠4=115°﹣50°=65°. 故答案为:65°. 【点睛】 此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键. 十三、填空题 13.59° 【分析】 由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解. 【详解】 解:如图,∵长方形ABCD沿 解析:59° 【分析】 由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解. 【详解】 解:如图,∵长方形ABCD沿EF折叠, ∴∠1=∠2,AD∥BC, ∴∠FGE+∠GEC=180°, ∵∠FGE=62°, ∴∠GEC=180°-62°=118°, ∴∠1=∠2=∠GEC=59°, ∵AD∥BC, ∴∠GFE=∠2, ∴∠GFE=59°. 故答案为59°. 【点睛】 本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键. 十四、填空题 14.5 【分析】 由已知可求,则可求. 【详解】 解:, , , , 故答案为:2019.5 【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键. 解析:5 【分析】 由已知可求,则可求. 【详解】 解:, , , , 故答案为:2019.5 【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键. 十五、填空题 15.【分析】 由M点的位置易求OM的长,在根据三角形的面积公式计算可求解. 【详解】 解:∵M在y轴上,纵坐标为4, ∴OM=4, ∵P(6,﹣4), ∴S△OMP=OM•|xP| =×4×6 =12 解析:【分析】 由M点的位置易求OM的长,在根据三角形的面积公式计算可求解. 【详解】 解:∵M在y轴上,纵坐标为4, ∴OM=4, ∵P(6,﹣4), ∴S△OMP=OM•|xP| =×4×6 =12. 故答案为12. 【点睛】 本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键. 十六、填空题 16.(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详 解析:(2,2) 【分析】 由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标. 【详解】 解:∵A点坐标为(−2,2),B点坐标为(3,2),C点坐标为(3,−1), ∴AB=3−(−2)=5,BC=2−(−1)=3, ∴从A→B→C→D→A→B→…一圈的长度为2(AB+BC)=16. ∵2020=126×16+4, ∴当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2). 故答案为:(2,2). 【点睛】 本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈. 十七、解答题 17.(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数 解析:(1)3;(2) 【分析】 (1)根据有理数加减混合运算法则求解即可; (2)根据平方根与立方根的定义先化简,然后合并求解即可. 【详解】 解:(1)原式 (2)原式 【点睛】 本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键. 十八、解答题 18.(1)x=;(2)x=. 【分析】 (1)利用平方根的定义求解; (2)利用立方根的定义求解. 【详解】 解:(1)4x2﹣25=0, 4x2=25, x2=, x=; (2)(2x﹣1)3=﹣64 解析:(1)x=;(2)x=. 【分析】 (1)利用平方根的定义求解; (2)利用立方根的定义求解. 【详解】 解:(1)4x2﹣25=0, 4x2=25, x2=, x=; (2)(2x﹣1)3=﹣64, 2x﹣1=﹣4, 2x=﹣3, x=. 【点睛】 本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键. 十九、解答题 19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;② 【分析】 (1)根据平行线的判定及性质即可证明; (2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可 解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;② 【分析】 (1)根据平行线的判定及性质即可证明; (2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可计算出; ②根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出. 【详解】 解:证明(1)证; 证明:(已知), (两直线平行,同位角相等), 又(已知) (等量代换), (同位角相等,两直线平行), 故答案是:两直线平行,同位角相等;同位角相等,两直线平行. (2)①与的平分线交于点,交于点, 且,, , , 由(1)知, , 在中, , , , 故答案是:; ②, , 由(1)知, , , 在中, , 故答案是:. 【点睛】 本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解. 二十、解答题 20.(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应 解析:(1)见解析;(2)见解析;(3) 【分析】 (1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形; (3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积. 【详解】 解:(1)平移后的三角形如下图所示; (2)平移后的三角形如下图所示; (3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积, ∴S△ABC . 【点睛】 本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差. 二十一、解答题 21.(1)3;;(2)7;(3) 【分析】 (1)先求出的取值范围,即可求出的整数部分,从而求出结论; (2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解; ( 解析:(1)3;;(2)7;(3) 【分析】 (1)先求出的取值范围,即可求出的整数部分,从而求出结论; (2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解; (3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数. 【详解】 解:(1)∵3<<4, ∴的整数部分是3,小数部分是 故答案为:3;; (2)∵ ∴ ∴ ∴的小数部分a=-2= ∵ ∴ ∴的整数部分b=4 ∴ =+4 =7; (3)∵ ∴ ∴ ∴的整数部分为2,小数部分为-2= ∵,其中x是正整数,, ∴,y= ∴= ∴的相反数为. 【点睛】 此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 二十二、解答题 22.(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程 解析:(1)长为,宽为;(2)正确,理由见解析 【分析】 (1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可; (2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积. 【详解】 解:(1)设长为3x,宽为2x, 则:3x•2x=30, ∴x=(负值舍去), ∴3x=,2x=, 答:这个长方形纸片的长为,宽为; (2)正确.理由如下: 根据题意得:, 解得:, ∴大正方形的面积为102=100. 【点睛】 本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键. 二十三、解答题 23.(1)65°;(2);(3)2n∠M+∠BED=360° 【分析】 (1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+ 解析:(1)65°;(2);(3)2n∠M+∠BED=360° 【分析】 (1)首先作EG∥AB,FH∥AB,连结MF,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义和三角形外角的性质可求∠M的度数; (2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解; (3)由(2)的方法可得到2n∠M+∠BED=360°. 【详解】 解:(1)如图1,作,,连结, , , ,,,, , , , 和的角平分线相交于, , , 、分别是和的角平分线, ,, , ; (2)如图1,,, ,, 与两个角的角平分线相交于点, ,, , , , ; (3)由(2)结论可得,,, 则. 【点睛】 本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质. 二十四、解答题 24.(1),;(2)1;(3)不变,值为2 【分析】 (1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4- 解析:(1),;(2)1;(3)不变,值为2 【分析】 (1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据S△ODP=S△ODQ,列出关于t的方程,求得t的值即可; (3)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可. 【详解】 解:(1)∵+|b-2|=0, ∴a-2b=0,b-2=0, 解得a=4,b=2, ∴A(0,4),C(2,0). (2)存在, 理由:如图1中,D(1,2), 由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒, ∴0<t≤2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-2t, ∴S△DOP=•OP•yD=(2-t)×2=2-t,S△DOQ=•OQ•xD=×2t×1=t, ∵S△ODP=S△ODQ, ∴2-t=t, ∴t=1. (3)结论:的值不变,其值为2.理由如下:如图2中, ∵∠2+∠3=90°, 又∵∠1=∠2,∠3=∠FCO, ∴∠GOC+∠ACO=180°, ∴OG∥AC, ∴∠1=∠CAO, ∴∠OEC=∠CAO+∠4=∠1+∠4, 如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG, ∴∠PHO=∠GOF=∠1+∠2, ∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4, ∴=2. 【点睛】 本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题. 二十五、解答题 25.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠ 解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD; [尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°; [深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α. 【详解】 [现象解释] 如图2, ∵OM⊥ON, ∴∠CON=90°, ∴∠2+∠3=90° ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=180°, ∴∠DCB+∠ABC=180°, ∴AB∥CD; 【尝试探究】 如图3, 在△OBC中,∵∠COB=55°, ∴∠2+∠3=125°, ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=250°, ∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°, ∴∠EBC+BCE=360°-250°=110°, ∴∠BEC=180°-110°=70°; 【深入思考】 如图4, β=2α, 理由如下:∵∠1=∠2,∠3=∠4, ∴∠ABC=180°-2∠2,∠BCD=180°-2∠3, ∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β, ∵∠BOC=∠3-∠2=α, ∴β=2α. 【点睛】 本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服