收藏 分销(赏)

2022年人教版中学七7年级下册数学期末考试试卷含答案word.doc

上传人:快乐****生活 文档编号:1924090 上传时间:2024-05-11 格式:DOC 页数:24 大小:470.54KB
下载 相关 举报
2022年人教版中学七7年级下册数学期末考试试卷含答案word.doc_第1页
第1页 / 共24页
2022年人教版中学七7年级下册数学期末考试试卷含答案word.doc_第2页
第2页 / 共24页
2022年人教版中学七7年级下册数学期末考试试卷含答案word.doc_第3页
第3页 / 共24页
2022年人教版中学七7年级下册数学期末考试试卷含答案word.doc_第4页
第4页 / 共24页
2022年人教版中学七7年级下册数学期末考试试卷含答案word.doc_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、2022年人教版中学七7年级下册数学期末考试试卷含答案word一、选择题1下列说法正确的是()A4的平方根是B16的平方根是C2是的算术平方根D是36的算术平方根2下列哪些图形是通过平移可以得到的()ABCD3在平面直角坐标系中,平行于坐标轴的线段,若点坐标是,则点不在( )A第一象限B第二象限C第三象限D第四象限4下列命题中,是假命题的是( )A两条直线被第三条直线所截,同位角相等B同旁内角互补,两直线平行C在同一平面内,过一点有且只有一条直线与已知直线垂直D如果两条直线都与第三条直线平行,那么这两条直线也互相平行5已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,则的度数为(

2、 )ABC或D或6对于有理数ab,定义mina,b的含义为:当ab时,mina,ba,当ba时,mina,bb例如:min1,22,已知min,aa,min,b,且a和b为两个连续正整数,则ab的立方根为( )A1B1C2D27如图,把一个长方形纸条沿折叠,已知,则为( )A30B28C29D268如图,点,点,点,点,按照这样的规律下去,点的坐标为( )ABCD九、填空题9计算:=_十、填空题10在平面直角坐标系中,已知点A的坐标为(2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是_十一、填空题11三角形ABC中,A=60,则内角B,C的角平分线相交所成的角为_十二、

3、填空题12如图,直线,若,_十三、填空题13如图,将一张长方形纸条折成如图的形状,若,则的度数为_十四、填空题14一列数a1,a2,a3,an,其中a11,a2,a3,an,则a2_;a1+a2+a3+a2020_;a1a2a3a2020_十五、填空题15已知点,轴,则点C的坐标是_ 十六、填空题16如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为_十七、解答题

4、17计算:(1);(2)十八、解答题18求下列各式中的值:(1);(2)十九、解答题19如图,点,分别是、上的点,(1)对说明理由,将下列解题过程补充完整解:(已知)_(_)(已知)_(_)(_)(2)若比大,求的度数二十、解答题20已知在平面直角坐标系中有三点A(2,1)、B(3,1)、C(2,3)请回答如下问题:(1)在坐标系内描出点A、B、C的位置;(2)求出以A、B、C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10,若存在,请直接写出点P的坐标;若不存在,请说明理由二十一、解答题21(1)如果是的整数部分,是的小数部分,求的平方根(2

5、)当为何值时,关于的方程的解与方程的解互为相反数二十二、解答题22求下图的方格中阴影部分正方形面积与边长二十三、解答题23如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)二十四、解答题24如图,已知AMBN,A64点P是射线AM上一动点(与点A不重合),BC、BD分别平分

6、ABP和PBN,分别交射线AM于点C,D(1)ABN的度数是 ;AMBN,ACB ;(2)求CBD的度数;(3)当点P运动时,APB与ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使ACBABD时,ABC的度数是 二十五、解答题25(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为1,反射光线 OB 与水平镜面夹角为2,则1=2 .(现象解释)如图 2,有两块平面镜 OM,ON,且 OMON,入射光线 AB 经过两次反射

7、,得到反射光线 CD.求证 ABCD.(尝试探究)如图 3,有两块平面镜 OM,ON,且MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求BEC 的大小.(深入思考)如图 4,有两块平面镜 OM,ON,且MON = ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,BED= , 与 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1B解析:B【分析】根据平方根和算术平方根的定义判断即可【详解】解:A4的平方根是2,故错误,不符合题意;B的平方根是4,故正确,符合题意;C-4没有

8、算术平方根,故错误,不符合题意;D-6是36的一个平方根,故错误,不符合题意;故选B【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断2B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误解析:B【分析】根据平移、旋转、轴对称的定义逐项判断即可【详解】A、通过旋转得到,故本选项错误B、通过平移得到,故本选项正确C、通过轴对称得到,故本选项错误D、通过旋转得到,故本选项错误故选:B【点睛】本题考查了平移、旋转、轴对称的定义,熟记定义是解题关

9、键3D【分析】设点 ,分轴和轴,两种情况讨论,即可求解【详解】解:设点 ,若轴,则点P、Q的纵坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ;若轴,则点P、Q的横坐标相等,线段,若点坐标是, , ,解得: 或 , 或 ,点 或或 或 ,点不在第四象限故选:D【点睛】本题主要考查了坐标与图形,线段与坐标轴平行时点的坐标特征,分轴和轴,两种情况讨论是解题的关键4A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C.

10、 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键5D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DEBC可得出ADE的度数,结合ADC=ADE+CDE可求出ADC的度数;当点D在线段AB的延长线上时,由DEBC可得出ADE的度数,结合ADC=ADE-CDE可求出ADC的度数综上,此题得解【详解】解:当点D在线段AB上时,如图1所示

11、DEBC,ADE=ABC=84,ADC=ADE+CDE=84+20=104;当点D在线段AB的延长线上时,如图2所示DEBC,ADE=ABC=84,ADC=ADE-CDE=84-20=64综上所述:ADC=104或64故选:D【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出ADC的度数是解题的关键6A【分析】根据a,b的范围即可求出ab的立方根【详解】解:根据题意得:a,b,253036,56,a和b为两个连续正整数,a5,b6,ab1,1的立方根是1,故选:A【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的

12、关键7C【分析】由 AE平行BD,可得AED=ADB=32,可求BAE=122,由折叠,可得BAF=EAF,可求EAF=61即可【详解】AE/BD,AED=ADB=32,BAE=BAD+DAE=90+32=122,折叠,BAF=EAF,2EAF=BAE=122EAF=61DAF=EAF-EAD=61-32=29故选择C【点睛】本题考查平行线性质,掌握折叠性质,平行线性质是解题关键8B【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),A2n1(3n1,n1),由2021是奇数,且20212n1,则可求A2n1(3032,10解析:B【分析】观察图形得到奇数点的规

13、律为,A1(2,0),A3(5,1),A5(8,2),A2n1(3n1,n1),由2021是奇数,且20212n1,则可求A2n1(3032,1010)【详解】故选B【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键九、填空题93【详解】试题分析:根据算术平方根的定义=3故答案是3考点:算术平方根解析:3【详解】试题分析:根据算术平方根的定义=3故答案是3考点:算术平方根十、填空题10(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的坐标为(2,5),点P与

14、点Q关于x轴解析:(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的坐标为(2,5),点P与点Q关于x轴对称,点P的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键十一、填空题11120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),解析:120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,

15、又因为DFE=BFC,BFC=180-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,再代入DFE=BFC=180-(FBC+FCB),即可解答试题解析:B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,DFE=180-(FBC+FCB),=180-60,=120;DFE的邻补角的度数为:180-120=60考点:角的度量十二、填空题1260【分析】过点E作EFAB,由平行线的性质,先求出CEF=120,即可求

16、出的度数【详解】解:过点E作EFAB,如图:,CEF=120,;故答解析:60【分析】过点E作EFAB,由平行线的性质,先求出CEF=120,即可求出的度数【详解】解:过点E作EFAB,如图:,CEF=120,;故答案为:60【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示, 170,341801110,又折叠,3455,

17、ABDE,2355,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题14, 1 【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值【详解】解:由题意可得,当a11时,a2,a3解析:, 1 【分析】根据题意,可以写出前几项的值,从而可以发现这列数的变化特点,从而可以求得所求式子的值【详解】解:由题意可得,当a11时,a2,a32,a41,202036731,a1+a2+a3+a2020(1+2)673+(1)673+(1),a1a2a3a2020(1)2673(1)(1)673(1)(1)

18、(1)1,故答案为:,1【点睛】本题考查有理数的运算,熟练掌握运算律及-1的指数幂运算是解题关键十五、填空题15(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,解析:(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,点C的纵坐标为2,AC=5,点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时

19、横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2)故答案为(6,2)或(-4,2)【点睛】本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论十六、填空题16(4,3)【分析】按照反弹规律依次画图即可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点解析:(4,3)【分析】按照反弹规律依次画图即可【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3

20、),再反射到P点(0,1)之后,再循环反射,每6次一循环,202163365,即点P2021的坐标是(4,3)故答案为:(4,3)【点睛】本题考查了生活中的轴对称现象,点的坐标解题的关键是能够正确找到循环数值,从而得到规律十七、解答题17(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=

21、0 原式= 十八、解答题18(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,解析:(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,开方得,;(2)移项得,合并同类项得,开立方得,【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键十九、解答题19(1)BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,

22、两直线平行;(2)70【分析】(1)根据平行线的性质得出ABFD,求出BFDFDE,根据平行线的判定得出即可解析:(1)BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,两直线平行;(2)70【分析】(1)根据平行线的性质得出ABFD,求出BFDFDE,根据平行线的判定得出即可;(2)根据平行线的性质得出A+AED180,ABFD,再求出AEDA40,即可求出答案【详解】(1)证明:DFAC(已知),ABFD(两直线平行,同位角相等),AFDE(已知),FDEBFD(等量代换),DEAB(内错角相等,两直线平行);故答案为:BFD;两直线平行,同位角相等;BFD;等量代换;内错角相

23、等,两直线平行;(2)解:DFAC,ABFD,AED比BFD大40,AEDBFD40,AEDA40,AED40+A,DEAB,A+AED180,A+40+A180,A70,BFD70【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,反之亦然二十、解答题20(1)见解析;(2)SABC5;(3)存在,P点的坐标为(0,5)或(0,3)【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx轴,且AB3(2)5,点C到线解析:(1)见解析;(2)SABC5;(3)

24、存在,P点的坐标为(0,5)或(0,3)【分析】(1)根据点的坐标,直接描点;(2)根据点的坐标可知,ABx轴,且AB3(2)5,点C到线段AB的距离312,根据三角形面积公式求解;(3)因为AB5,要求ABP的面积为10,只要P点到AB的距离为4即可,又P点在y轴上,满足题意的P点有两个【详解】解:(1)描点如图;(2)依题意,得ABx轴,且AB3(2)5,SABC525;(3)存在;AB5,SABP10,P点到AB的距离为4,又点P在y轴上,P点的坐标为(0,5)或(0,3)【点睛】本题考查了点的坐标的表示方法,能根据点的坐标表示三角形的底和高并求三角形的面积二十一、解答题21(1)3;(

25、2)m=-4【分析】(1)估算,得到的范围,从而确定x、y的值,再代入计算即可(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可【详解析:(1)3;(2)m=-4【分析】(1)估算,得到的范围,从而确定x、y的值,再代入计算即可(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可【详解】解:(1),x=6,y=,=9,的的平方根为3;(2),解得:x=-9,的解为x=9,代入,得,解得:m=-4【点睛】本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解二十二、解答题2

26、28;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二十三、解答题23(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B

27、=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=解析:(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1

28、)证明:过P作PMCD, APM=DAP(两直线平行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP

29、2=EBP, AP2B=CAP+EBP, = (180-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线二十四、解答题24(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质

30、,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明CBDABN,即可求出结果;(3)不变,APB:ADB2:1,证APBPBN,PBN2DBN,即可推出结论;(4)可先证明ABCDBN,由(1)ABN116,可推出CBD58,所以ABC+DBN58,则可求出ABC的度数【详解】解:(1)AM/BN,A64,ABN180A116,故答案为:116;AM/BN,ACBCBN,故答案为:CBN;(2)AM/BN,ABN+A180,ABN18064116,ABP+PBN116,BC平分ABP,BD平分PBN,ABP2CBP,PBN2DBP,2CBP+2DBP116,CBDCBP+DBP

31、58;(3)不变,APB:ADB2:1,AM/BN,APBPBN,ADBDBN,BD平分PBN,PBN2DBN,APB:ADB2:1;(4)AM/BN,ACBCBN,当ACBABD时,则有CBNABD,ABC+CBDCBD+DBNABCDBN,由(1)ABN116,CBD58,ABC+DBN58,ABC29,故答案为:29【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等二十五、解答题25【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3

32、=90得出1+2+解析:【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+3+4=180,即可得出DCB+ABC=180,即可证得ABCD;尝试探究根据三角形内角和定理求得2+3=125,根据平面镜反射光线的规律得1=2,3=4,再利用平角的定义得出1+2+EBC+3+4+BCE=360,即可得出EBC+BCE=360-250=110,根据三角形内角和定理即可得出BEC=180-110=70;深入思考利用平角的定义得出ABC=180-22,BCD=180-23,利用外角的性质BE

33、D=ABC-BCD=(180-22)-(180-23)=2(3-2)=,而BOC=3-2=,即可证得=2【详解】现象解释如图2,OMON,CON=90,2+3=901=2,3=4,1+2+3+4=180,DCB+ABC=180,ABCD;【尝试探究】如图3,在OBC中,COB=55,2+3=125,1=2,3=4,1+2+3+4=250,1+2+EBC+3+4+BCE=360,EBC+BCE=360-250=110,BEC=180-110=70;【深入思考】如图4,=2,理由如下:1=2,3=4,ABC=180-22,BCD=180-23,BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,BOC=3-2=,=2【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服