1、2022年人教版七7年级下册数学期末复习试卷含答案word一、选择题1如图所示,下列四个选项中不正确的是( )A与是同旁内角B与是内错角C与是对顶角D与是邻补角2下列各组图形可以通过平移互相得到的是()ABCD3点(4,2)所在的象限是()A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A对顶角相等B两直线平行,同旁内角相等C过直线外一点有且只有一条直线与已知直线平行D同位角相等,两直线平行5如图,P为平行线之间的一点,若,CP平分ACD,则BAP的度数为( )ABCD6若一个正数的两个平方根分别是2m+6和m18,则5m+7的立方根是( )A9B3C2D97如图,中,平分
2、,于点,则的度数为( )A134B124C114D1048如图,一个粒子在第一象限内及x轴y轴上运动,在第一分钟,它从原点运动到点;第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x轴y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( )ABCD九、填空题9计算_十、填空题10若点A(5,b)与点B(a+1,3)关于x轴对称,则(a+b)=_十一、填空题11如图,在中,是的角平分线,垂足为,则_ 十二、填空题12如图,直线 a/b,若1 = 40,则2 的度数是_.十三、填空题13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折
3、叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_十四、填空题14用“”定义一种新运算:对于任意有理数a和b,规定ab=例如:(-3)2= = 2从8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(ab)的值,并计算ab,那么所有运算结果中的最大值是_十五、填空题15如图,直线经过原点,点在轴上,于若A(4,0),B(m,3),C(n,-5),则_十六、填空题16如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动即(0
4、,0)(0,1) (1,1) (1,0),每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是_十七、解答题17计算: (1) (2)十八、解答题18已知,求下列各式的值:(1);(2)十九、解答题19如图,BD平分ABC,F在AB上,G在AC上,FC与BD相交于点H,34180,试说明12(请通过填空完善下列推理过程)解:34180(已知),FHD4( )3FHD180(等量代换)FGBD( )1 (两直线平行,同位角相等)BD平分ABC,ABD (角平分线的定义)12(等量代换)二十、解答题20如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系已知三角形ABC的顶点A的坐标为A
5、(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1)(1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形ABC,请你画出三角形ABC,并直接写出点A的坐标;(2)若点P(m,n)为三角形ABC内的一点,则平移后点P在ABC内的对应点P的坐标为 (3)求三角形ABC的面积二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2,于是可用来表示的小数部分请解答下列问题: (1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值二十二、解答题22如图,8块相同的小长方形地
6、砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线P
7、M绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由二十四、解答题24课题学习:平行线的“等角转化”功能阅读理解:如图1,已知点A是BC外一点,连接AB,AC,求BACBC的度数(1)阅读并补充下面推理过程解:过点A作EDBC,BEAB,C 又EABBACDAC180BBACC180解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将BAC,B,C“凑”在一起,得出角之间的关系,使问题得以解决方法运用:(2)如图2,已知ABED,求BBC
8、DD的度数(提示:过点C作CFAB)深化拓展:(3)如图3,已知ABCD,点C在点D的右侧,ADC70,点B在点A的左侧,ABC60,BE平分ABC,DE平分ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求BED的度数二十五、解答题25(1)如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值【参考答案】一、选择题1B解析:
9、B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析【详解】A. 与是同旁内角,故该选项正确,不符合题意; B. 与不是内错角,故该选项不正确,符合题意;C. 与是对顶角,故该选项正确,不符合题意; D. 与是邻补角,故该选项正确,不符合题意;故选B【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第
10、三条直线的同旁,那么这两个角叫做同旁内角两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角2B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故本选项错误故选:B【点睛】本题考查了图形的平移,正确掌握平移的定义和性质是解题关键3B【分析】根据第二象限的
11、点的横坐标是负数,纵坐标是正数解答【详解】解:点(-4,2)所在的象限是第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B【点睛】
12、本题考查真假命题,是基础考点,掌握相关知识是解题关键5A【分析】过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案【详解】解:如图,过P点作PMAB交AC于点MCP平分ACD,ACD68,4ACD34ABCD,PMAB,PMCD,3434,APCP,APC90,2APC356,PMAB,1256,即:BAP的度数为56,故选:A【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键6B【分析】根据立方根与平方根的定义即可求出答案【详解】解:由题意可知:2m+6+m180,m4,5m+727,27的立方根是3,故选:B【点睛】考核
13、知识点:平方根、立方根理解平方根、立方根的定义和性质是关键7B【分析】已知AE平分BAC,EDAC,根据两直线平行,同旁内角互补可知DEA的度数,再由周角为360,求得BED的度数即可【详解】解:AE平分BAC,BAE=CAE=34,EDAC,CAE+AED=180,DEA=180-34=146,BEAE,AEB=90,AEB+BED+AED=360,BED=360-146-90=124,故选:B【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键8B【分析】找出粒子运动规律和坐标之间的关系即可解题【详解】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示
14、粒子运动了212分钟,将向左运动,(2,2)表示粒子运动了62解析:B【分析】找出粒子运动规律和坐标之间的关系即可解题【详解】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了212分钟,将向左运动,(2,2)表示粒子运动了623分钟,将向下运动,(3,3)表示粒子运动了1234分钟,将向左运动,.于是会出现:(44,44)点粒子运动了44451980分钟,此时粒子将会向下运动,在第2021分钟时,粒子又向下移动了2021198041个单位长度,粒子的位置为(44,3),故选:B【点睛】本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律九、填空题911【分析】直接利用算术
15、平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正解析:11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键十、填空题101【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值【详解】解:点A(5,b)与点B(a+1,3)关于x轴对称,5=a+1,b=-3,a=4,(a+b解析:1【分析】关于x轴对称的两点横坐标相等,纵坐标互为相
16、反数,由此可求a、b的值【详解】解:点A(5,b)与点B(a+1,3)关于x轴对称,5=a+1,b=-3,a=4,(a+b)2017=(4-3)2017=1故答案为:1【点睛】本题考查了关于坐标轴对称的两点的坐标关系关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数十一、填空题11【解析】已知C=90,AD是ABC的角平分线,DEAB,根据角平分线的性质可得DC=DE=1;因,根据30直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知C=90,AD是ABC的角平分线,DEAB,根据角平分线的性质可得DC=DE=1;因
17、,根据30直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.十二、填空题12140【详解】解:ab,1=40,3=1=40,2=180-3=180-40=140故答案为:140解析:140【详解】解:ab,1=40,3=1=40,2=180-3=180-40=140故答案为:140十三、填空题13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质
18、将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行四边形,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AEFEFC,GEFAEFEFC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键十四、填空题148【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有
19、理数的混合运算,熟练掌握运算法则是解本题的关键解析:8【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键十五、填空题15【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BCAD=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A解析:【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BCAD=32【详解】解:过B作BEx轴于E,过C作CFy轴于F,B(m,3),BE=3,A(4,0),AO=4,C(n,-
20、5),OF=5,SAOB=AOBE=43=6,SAOC=AOOF=45=10,SAOB+SAOC=6+10=16,SABC=SAOB+SAOC,BCAD=16,BCAD=32,故答案为:32【点睛】本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积十六、填空题16(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)
21、秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳动;跳到(2,2)位置用时23=6秒,下一步向左跳动;跳到(3,3)位置用时34=12秒,下一步向下跳动;跳到(4,4)位置用时45=20秒,下一步向左跳动;由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向下跳动;当n为偶数时,下一步向左跳动;第67=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6)【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运
22、动的规律,从而可以得到到达每个点所用的时间十七、解答题17(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1解析:(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1)原式=-(2-4)6+3=+ +3=3;(2)原式= = 故答案为:(1)3;(2) 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1)4
23、4;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;(2)将a2+b2与ab的值代入原式计算即可求出值【详解】解:(1)把解析:(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab的值代入计算即可求出原式的值;(2)将a2+b2与ab的值代入原式计算即可求出值【详解】解:(1)把两边平方得:,把代入得:,;(2),=48【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键十九、解答题19对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=1
24、80,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,解析:对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=180,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,根据角平分线的定义得出ABD=2即可【详解】解:3+4=180(已知),FHD=4(对顶角相等), 3+FHD=180(等量代换), FGBD(同旁内角互补,两直线平行), 1=ABD(两直线平行,同位角相等), BD平分ABC, ABD=2(角平分线的定义), 1=2(等量代换), 故答案为:对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两
25、直线平行,同位角相等,2【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键二十、解答题20(1)作图见解析,A(4,0);(2)(m+5,n-4);(3)3.5【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)利用平移的性质得出P(m,n)的对应点P的坐标即解析:(1)作图见解析,A(4,0);(2)(m+5,n-4);(3)3.5【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)利用平移的性质得出P(m,n)的对应点P的坐标即可;(3)直接利用ABC所在矩形面积减去周围三角形面积进而得出答案【详
26、解】解:(1)如图所示:ABC即为所求:A(4,0);(2)ABC先向右平移5个单位长度,再向下平移4个单位长度,得到ABC,P(m,n)的对应点P的坐标为(m+5,n-4);(3)ABC的面积=33213132=3.5【点睛】本题主要考查了坐标与图形的变化平移,三角形面积求法以及坐标系内图形平移,正确得出对应点位置是解题关键二十一、解答题21(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故解析:(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先
27、估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故答案为:5;-5;(2)34,a-3,34,b3,-3+3-=0【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此题的关键二十二、解答题22(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形
28、的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于解析:(1)20,20,;(2);(3)的值不变,【分析】(1
29、)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键二十四、解答题24(1)DAC;(2)360;(3)65【分析】(1)根据平行线的性质即可得到结论;(2)过C作CFAB根据平行线的性质得到D=FCD,B=BCF,然后根据
30、已知条件即可得到结论;解析:(1)DAC;(2)360;(3)65【分析】(1)根据平行线的性质即可得到结论;(2)过C作CFAB根据平行线的性质得到D=FCD,B=BCF,然后根据已知条件即可得到结论;(3)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数【详解】解:(1)过点A作EDBC,B=EAB,C=DCA,又EAB+BAC+DAC=180,B+BAC+C=180故答案为:DAC;(2)过C作CFAB,ABDE,CFDE,D=FCD,CFAB,B=BCF,BCF+BCD+DCF=360,B+BCD+D=360;(3)如图3,过点E作EFAB,ABCD,ABCDEF,A
31、BE=BEF,CDE=DEF,BE平分ABC,DE平分ADC,ABC=60,ADC=70,ABE=ABC=30,CDE=ADC=35,BED=BEF+DEF=30+35=65【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算二十五、解答题25(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC解析:(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC
32、的外角,可得B=CAE-ACB,再根据CAD是ACF的外角,即可得到F=CAD-ACF=CAE-ACB=(CAE-ACB)=B;(2)由(1)可得,F=ABC,根据角平分线的定义以及三角形内角和定理,即可得到H=90+ABG,进而得到F+H=90+CBG=180【详解】解:(1)AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)B45,故答案为45;AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)Ba;(2)由(1)可得,FABC,AGB与GAB的角平分线交于点H,AGHAGB,GAHGAB,H180(AGH+GAH)180(AGB+GAB)180(180ABG)90+ABG,F+HABC+90+ABG90+CBG180,F+H的值不变,是定值180【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键