资源描述
人教版五年级数学下册期末解答综合复习题及答案经典
1.明明上半身长45cm,身高是105cm,明明的上半身长是下半身长的几分之几?
2.五(1)班共有15幅书法作品参加学校的书法比赛,其中4幅作品从全校135幅参赛作品中脱颖而出获奖。五(1)班参赛作品占全校参赛作品的几分之几?
3.甲队6天共修路5千米,乙队每天修路千米,甲队比乙队平均每天少修路多少千米?
4.12个苹果重2千克,平均分给4个人,每人分得几个?每人分得多少千克的苹果?每人分得全部苹果的几分之几?
5.五年级某班在植树活动中,无论分3人一组、4人一组还是5人一组,都剩余2个同学,这个班共有多少人?
6.小明的妈妈买来一袋水果,总数不到50个,3个3个地数或5个5个地数,都正好数完,苹果最多有多少个?
7.食品店运来一些面包,如果每2个装一袋,每3个装一袋,每5个装一袋,都能正好装完,这些面包可能有多少个?(面包个数在50-80之间)
8.海悦公园要把一块空地铺上地砖,一种地砖长30厘米,宽20厘米。如果用这种地砖拼成一个正方形的图案,至少需要多少块这样的地砖?
9.一瓶果汁2千克,第一次喝了它的,第二次喝了它的,还剩这瓶果汁的几分之几?
10.一根桥桩全长11米,打入河底部分长米,露出水面部分比打入河底部分多米。水深是多少米?
11.五年①班的同学参加学校“数学文化节”活动,班上的同学参加数独游戏,的同学参加“24点”游戏,的同学参加七巧板游戏。其余的同学被老师选派担任文化节的工作人员。
(1)五年①班参加三项数学游戏的同学一共占了班上的几分之几?
(2)五年①班担任文化节工作人员的同学占了班上的几分之几?
(3)五年①班一共有40名同学,担任文化节工作人员的同学有几人?
12.有两根彩带,红彩带长米,比蓝彩带短米,蓝彩带长多少米?
13.一个无盖的长方体铁皮水槽,长3分米,宽18厘米,高15厘米。
(1)做这个水槽至少需要铁皮多少平方厘米?
(2)这个水槽最多可以盛水多少升?
(3)把这个水槽装满水后平放在桌面上,把它像下图那样斜放,水流出量。这时的长度是( )厘米。
14.一个美术教室长12米,宽8米,高3.5米。
(1)如果平均每次上课的班级人数为40人,那么生均占地面积为多少平方米?
(2)如果要给这个教室四周和顶面重新刷漆,除去黑板和门窗共44.7平方米,那么需要刷漆多少平方米?
15.一块长方形的铁皮,每个角切掉一个边长7厘米的正方形,然后做成一个无盖的铁盒。这个盒子的表面积是多少平方厘米?最多能装多少升水?
16.学校要粉刷一间教室的屋顶和四壁。已知教室的长是8米,宽5米,高是3米,门窗和黑板的面积一共是。如果每平方米需要花4元的涂料费,粉刷这间教室一共需要花费多少元?
17.一个棱长是的正方体铁块,熔铸成一个长、宽的长方体铁块,这个长方体铁块高多少厘米?(损耗忽略不计)
18.工人师傅要将一个棱长6分米的正方体钢锭,铸造成一个长8分米,宽3分米的长方体钢锭。铸成的钢锭有多高?
19.一个密封的长方体玻璃容器(玻璃厚度不计),长4分米、宽3分米、高8分米,里面水深5分米(如图1),现在以这个容器的右侧面为底,侧放在桌面上(如图2)。
(1)这时水深多少分米?
(2)容器(如图2)没有与水接触部分的面积是多少?
20.如图,一块长方形铁皮长30厘米,宽20厘米,如果在这块铁皮的四个角都剪下一个边长5厘米的正方形,焊接成一个无盖长方体铁盒(忽略铁皮厚度),将铁盒装满水。
(1)水的体积是多少立方厘米?
(2)如果将盒子里的水倒一部分到下面这个容器中,使铁盒中的水面和这个容器中的水面同样高,这个容器中的水高多少厘米?
21.画出小鱼先向左平移8格,再向下平移4格后的图形。最后再画出原小鱼的轴对称图形。
22.按要求画一画。
(1)将图形A向右平移7格,再向下平移2格,画出平移后的图形B。
(2)画出图形A以直线L为对称轴的轴对称图形C。
23.(1)画出将小鱼向上平移4格的图形。
(2)再画出把平移后的小鱼向左平移5格后的图形。
(3)观察对称轴的位置,画出小船的轴对称图形。
24.(1)画出下图中长方形的所有对称轴。
(2)将三角形绕A点逆时针旋转90度,画出旋转后的图形。
(3)将旋转后的三角形向左平移5格,画出平移后的图形。
25.小华骑车从家去相距5千米的图书馆借书,根据下面的统计图回答问题。
(1)小华去图书馆的路上停车( )分钟,在图书馆借书用了( )分钟。
(2)小华骑车从图书馆返回家的平均速度是多少?
26.玲玲加有一个长方形玻璃鱼缸,长8dm、宽4dm、高6dm.
(1)制作这个鱼缸至少需要玻璃多少dm2?(鱼缸的上面没有玻璃)
(2)鱼缸原来有一些水,(如图1),放入四个相同大小的装饰球后(如图2),水面上升了5cm.每个装饰球的体积是多少dm2?
27.下面是武汉市和成都市某月同一周的气温统计表。
(1)根据表中数据绘制折线统计图。
(2)你能判断这是哪个季节吗?说说你的理由。
28.五(1)班要从两个同学中选一人参加学校的投篮比赛。下表是两位同学的训练成绩:(每人每次投10个)
星期
投中数
选手
一
二
三
四
五
甲
2
6
1
7
4
乙
2
3
4
5
6
(1)根据表中数据完成折线统计图;
(2)分析数据,你认为应该选( )同学参加学校的投篮比赛。
1.【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
解析:
【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
本题考查求一个数占另一个数的几分之几,用除法计算。
2.【分析】
求一个数占另一个数的几分之几,用除法,应该用五(1)班参赛作品除以全校参赛作品,据此解答即可。
【详解】
15÷135=
答:五(1)班参赛作品占全校参赛作品的。
【点睛】
本题考查求一
解析:
【分析】
求一个数占另一个数的几分之几,用除法,应该用五(1)班参赛作品除以全校参赛作品,据此解答即可。
【详解】
15÷135=
答:五(1)班参赛作品占全校参赛作品的。
【点睛】
本题考查求一个数占另一个数的几分之几,用前者除以后者即可。
3.千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米
解析:千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米。
【点睛】
异分母分数相加减,先通分再计算。
4.3个;千克;
【分析】
根据题意,求每人分得几个,用苹果的总个数除以4即可解答;求每人分得多少千克的苹果,用苹果的总重量除以4即可;把全部苹果看作单位“1”,平均分给4个人,则每人分得全部苹果的。
解析:3个;千克;
【分析】
根据题意,求每人分得几个,用苹果的总个数除以4即可解答;求每人分得多少千克的苹果,用苹果的总重量除以4即可;把全部苹果看作单位“1”,平均分给4个人,则每人分得全部苹果的。
【详解】
12÷4=3(个)
2÷4=(千克)
1÷4=
答:每人分得3个,每人分得千克的苹果,每人分得全部苹果的。
【点睛】
本题考查除法的应用和分数的意义。根据所求问题找到需要的信息是解题的关键。
5.62人
【分析】
根据题意可知,3人一组剩2人,4人一组剩2人,5人一组剩2人,这个数就是3、4、5的最小公倍数加上2,求出3、4、5的最小公倍数,即可解答。
【详解】
3、4、5的最小公倍数是:3
解析:62人
【分析】
根据题意可知,3人一组剩2人,4人一组剩2人,5人一组剩2人,这个数就是3、4、5的最小公倍数加上2,求出3、4、5的最小公倍数,即可解答。
【详解】
3、4、5的最小公倍数是:3×4×5
=12×5
=60
这个班共有:60+2=62(人)
答:这个班共有62人。
【点睛】
本题考查最小公倍数的求法;灵活运用最小公倍数的求解方法来解决实际问题。
6.45个
【分析】
根据题意,苹果的个数应该是3和5的公倍数,且小于50,据此解答。
【详解】
3和5的公倍数有:15,30,45,60
苹果的个数不到50,苹果最多有45个。
答:苹果最多有45个。
解析:45个
【分析】
根据题意,苹果的个数应该是3和5的公倍数,且小于50,据此解答。
【详解】
3和5的公倍数有:15,30,45,60
苹果的个数不到50,苹果最多有45个。
答:苹果最多有45个。
【点睛】
本题考查求3和5的公倍数,关键是明确苹果的个数不超过50,3和5的公倍数不能超过50,
7.60个
【分析】
根据题意,如果每2个装一袋,每3个装一袋,每5个装一袋,都能正好装完,就是求2、3、5的公倍数,而且50-80之间。
【详解】
2×3×5=30(个)
30×2=60(个)
答:这
解析:60个
【分析】
根据题意,如果每2个装一袋,每3个装一袋,每5个装一袋,都能正好装完,就是求2、3、5的公倍数,而且50-80之间。
【详解】
2×3×5=30(个)
30×2=60(个)
答:这些面包可能有60个。
【点睛】
本题主要考查公倍数的求法及运用。
8.6块
【分析】
分析题意可知拼成最小正方形的边长是30和20的最小公倍数,所以拼成最小正方形的边长为60厘米,60÷30是一排需要几块砖,60÷20是有几排砖,最后相乘即为至少需要多少块。如下图所示
解析:6块
【分析】
分析题意可知拼成最小正方形的边长是30和20的最小公倍数,所以拼成最小正方形的边长为60厘米,60÷30是一排需要几块砖,60÷20是有几排砖,最后相乘即为至少需要多少块。如下图所示:
【详解】
30=2×3×5
20=2×2×5
所以30和20的最小公倍数是2×3×5×2=60。
60÷30=2(块)
60÷20=3(块)
一共需要地砖:2×3=6(块)
答:至少需要6块这样的地砖。
【点睛】
明确正方形的边长是30和20的最小公倍数是解题的关键。
9.【分析】
把2千克果汁看作单位“1”,减去第一次、第二次喝的分率就是剩下的是这瓶果汁的几分之几。
【详解】
1--
=1-(+)
=1-
=
答:还剩这瓶果汁的。
【点睛】
本题关键是确定单位“1
解析:
【分析】
把2千克果汁看作单位“1”,减去第一次、第二次喝的分率就是剩下的是这瓶果汁的几分之几。
【详解】
1--
=1-(+)
=1-
=
答:还剩这瓶果汁的。
【点睛】
本题关键是确定单位“1”,然后根据分数减法的意义解答。
10.米
【分析】
先用河底部分的长度加上米,求出水面以上部分的长度,再用总长度减去河底部分的长度,再减去水面以上部分的长度即可求解。
【详解】
+=(米)
11--
=--
=(米)
答:水深是米。
【
解析:米
【分析】
先用河底部分的长度加上米,求出水面以上部分的长度,再用总长度减去河底部分的长度,再减去水面以上部分的长度即可求解。
【详解】
+=(米)
11--
=--
=(米)
答:水深是米。
【点睛】
理解题意,找出水深的求解方法,关键是求出漏出水面部分的长度。
11.(1)
(2)
(3)7人
【分析】
(1)用参加数独的占全班的几分之几+参加“24点”的占全班的几分之几+参加七巧板占全班的几分之几。
(2)将五①班学生人数看作单位“1”,用1-参加三项数学游戏
解析:(1)
(2)
(3)7人
【分析】
(1)用参加数独的占全班的几分之几+参加“24点”的占全班的几分之几+参加七巧板占全班的几分之几。
(2)将五①班学生人数看作单位“1”,用1-参加三项数学游戏的同学一共占了班上的几分之几=担任文化节工作人员的同学占了班上的几分之几。
(3)根据分数的意义,用总人数÷全班同学的份数×担任文化节工作人员的同学的份数即可。
【详解】
(1)++
=+
=
答:五年级①班参加三项数学游戏的同学一共占了班上的。
(2)1-=
答:五年级①班担任文化节工作人员的同学占了班上的。
(3)40÷40×7=7(人)
答:担任文化节工作人员的同学有7人。
【点睛】
异分母分数相加减,先通分再计算。
12.米
【分析】
根据题目可知,红彩带比蓝彩带短米,则红彩带的长度+=蓝彩带的长度,把数代入即可求解。
【详解】
+=(米)
答:蓝彩带长米。
【点睛】
本题主要考查异分母分数加减法,要注意,分数后面加
解析:米
【分析】
根据题目可知,红彩带比蓝彩带短米,则红彩带的长度+=蓝彩带的长度,把数代入即可求解。
【详解】
+=(米)
答:蓝彩带长米。
【点睛】
本题主要考查异分母分数加减法,要注意,分数后面加单位表示具体的数。
13.(1)1980平方厘米
(2)8.1升
(3)6厘米
【分析】
(1)根据无盖的长方体表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解,要注意单位换算;
(2)根据长方体的体积公式:
解析:(1)1980平方厘米
(2)8.1升
(3)6厘米
【分析】
(1)根据无盖的长方体表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解,要注意单位换算;
(2)根据长方体的体积公式:长×宽×高,把数代入即可,之后求出的体积再转换成容积;
(3)用水槽中水的量乘求出溢出水的容积,通过图可知,溢出水的容积乘2即可求出长是3分米,宽是18厘米,高是(15-AB)厘米的长方体的体积,用长方体的体积除以底面积即可求出此时的高,用15减去高即可求出AB的长度。
【详解】
(1)3分米=30厘米
30×18+(30×15+18×15)×2
=540+(450+270)×2
=540+720×2
=540+1440
=1980(平方厘米)
答:做这个水槽至少需要铁皮1980平方厘米
(2)30×18×15
=540×15
=8100(立方厘米)
8100立方厘米=8.1升
答:这个水槽最多可以盛水8.1升
(3)8100××2÷(30×18)
=2430×2÷540
=4860÷540
=9(厘米)
15-9=6(厘米)
答:这时AB的长度是6厘米。
【点睛】
本题主要考查长方体的体积和表面积公式,熟练掌握它的公式并灵活运用。
14.(1)2.4平方米;(2)191.3平方米
【分析】
(1)教室的占地面积就是长方体的底面积,长方体的底面是长方形。先用教室的长乘宽求出教室的占地面积,再除以40即可求出生均占地面积。
(2)教室的
解析:(1)2.4平方米;(2)191.3平方米
【分析】
(1)教室的占地面积就是长方体的底面积,长方体的底面是长方形。先用教室的长乘宽求出教室的占地面积,再除以40即可求出生均占地面积。
(2)教室的四壁和顶面面积之和=长×宽+(长×高+宽×高)×2,据此求出教室四周和顶面的面积总和,再减去黑板和门窗的面积即可求出需要刷漆的面积。
【详解】
(1)12×8÷40
=96÷40
=2.4(平方米)
答:生均占地面积为2.4平方米。
(2)12×8+(12×3.5+8×3.5)×2
=96+(42+28)×2
=96+70×2
=96+140
=236(平方米)
236-44.7=191.3(平方米)
答:需要刷漆191.3平方米。
【点睛】
本题考查长方体表面积的应用。根据实际情况,灵活运用长方体的表面积公式是解题的关键。
15.956平方厘米;2.38升
【分析】
盒子的表面积=长方形的面积-4个空白小正方形的面积;长方体铁盒的容积=长×宽×高,据此解答。
【详解】
表面积:48×24-4×(7×7)
=48×24-4×4
解析:956平方厘米;2.38升
【分析】
盒子的表面积=长方形的面积-4个空白小正方形的面积;长方体铁盒的容积=长×宽×高,据此解答。
【详解】
表面积:48×24-4×(7×7)
=48×24-4×49
=1152-196
=956(平方厘米)
容积:(48-7×2)×(24-7×2)×7÷1000
=(48-14)×(24-14)×7÷1000
=34×10×7÷1000
=340×7÷1000
=2380÷1000
=2.38(立方分米)
2.38立方分米=2.38升
答:这个盒子的表面积是956平方厘米,最多能装2.38升水。
【点睛】
根据展开图计算出长方体的长、宽、高是解答本题的关键。
16.元
【分析】
需要粉刷的面积用教室前、后、左、右、上面,4个面的面积减去门窗面积,再用需要粉刷的面积×每平方米涂料费即可。
【详解】
8×5+8×3×2+5×3×2-17.5
=40+48+30-1
解析:元
【分析】
需要粉刷的面积用教室前、后、左、右、上面,4个面的面积减去门窗面积,再用需要粉刷的面积×每平方米涂料费即可。
【详解】
8×5+8×3×2+5×3×2-17.5
=40+48+30-17.5
=100.5(平方米)
100.5×4=402(元)
答:粉刷这个教室共需要花费402元。
【点睛】
关键是灵活计算长方体表面积,长方体表面积=(长×宽+长×高+宽×高)×2。
17.18厘米
【分析】
根据题目可知,正方体铁块熔铸成一个长方体铁块,即体积不变,根据正方体的体积公式:棱长×棱长×棱长,把数代入公式求出正方体的铁块的体积,再根据长方体的体积公式:长×宽×高,把数代入
解析:18厘米
【分析】
根据题目可知,正方体铁块熔铸成一个长方体铁块,即体积不变,根据正方体的体积公式:棱长×棱长×棱长,把数代入公式求出正方体的铁块的体积,再根据长方体的体积公式:长×宽×高,把数代入即可求出长方体铁块的高。
【详解】
6×6×6÷(4×3)
=216÷12
=18(cm)
答:这个长方体铁块高18厘米。
【点睛】
本题主要考查正方体长方体的体积公式,同时要注意,一个物体熔铸成另一个物体它的体积不变。
18.9分米
【解析】
【详解】
6×6×6÷8÷3=9(分米)
答:高是9分米
解析:9分米
【解析】
【详解】
6×6×6÷8÷3=9(分米)
答:高是9分米
19.(1)2.5分米
(2)57平方分米
【分析】
(1)由题意,长方体内水的体积为4×3×5=60(立方分米),现以这个容器的右侧面为底,侧放在桌面上,这时是以8×3的面为底面,要求此时的水深,可列式
解析:(1)2.5分米
(2)57平方分米
【分析】
(1)由题意,长方体内水的体积为4×3×5=60(立方分米),现以这个容器的右侧面为底,侧放在桌面上,这时是以8×3的面为底面,要求此时的水深,可列式为:4×3×5÷(3 ×8)=2.5(分米);
(2)观察图2,此时没有与水接触的部分的面积可看作是一个无盖的长方体的表面积,其中长、宽、高分别为8、3、(4-2.5);利用这些数据,结合长方体表面积公式,可求得没有与水接触部分的面积是多少。
【详解】
(1)4×3×5÷(3×8)
=60÷24
=2.5(分米)
答:这是水深2.5分米。
(2)4-2.5=1.5(分米)
8×3+(3×1.5+8×1.5)×2
=24+16.5×2
=24+33
=57(平方分米)
答:没有与水接触部分的面积是57平方分米。
【点睛】
(1)这一问属于体积的等积变形,要点是掌握其中不变的为水的体积;
(2)这一问较为复杂,因为没有与水接触部分是5个面,且同属于一个长方体,所以可视作为一个无盖的长方体的表面积。
20.(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=
解析:(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=容器中水的体积,据此列方程解答。
【详解】
(1)30×20×5
=600×5
=3000(立方厘米)
答:水的体积是3000立方厘米。
(2)解:设这个容器中的水高为x厘米,
30×20×(5-x)=10×5×x
12×(5-x)=x
60-12x=x
13x=60
x=
答:这个容器中的水高厘米。
【点睛】
列方程是解答应用题的一种有效的方法,解题的关键是弄清题意,找出应用题中的等量关系。
21.见详解
【分析】
作平移后的图形步骤:(1)找点——找出构成图形的关键点。(2)定方向、距离——确定平移方向和平移距离。(3)画线——过关键点沿平移方向画出平行线。(4)定点——由平移的距离确定关键
解析:见详解
【分析】
作平移后的图形步骤:(1)找点——找出构成图形的关键点。(2)定方向、距离——确定平移方向和平移距离。(3)画线——过关键点沿平移方向画出平行线。(4)定点——由平移的距离确定关键点平移后的对应点的位置。(5)连点——连接对应点。
补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
【详解】
【点睛】
本题考查画平移后的图形和补全轴对称图形。要牢固掌握画平移和轴对称图形的方法和步骤。
22.见详解
【分析】
(1)根据平移的特征,把图A的各顶点分别向右平移7格,再向下平移2格,依次连结即可得到平移后的图形;
(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴
解析:见详解
【分析】
(1)根据平移的特征,把图A的各顶点分别向右平移7格,再向下平移2格,依次连结即可得到平移后的图形;
(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图A的关键对称点,依次连结即可。
【详解】
(1)画出图A先向右平移7格,再向下平移2格后的图形(图中红色部分):
(2)以以直线L为对称轴,画出图形A的轴对称图形(图中蓝色部分):
【点睛】
此题考查的是平移和轴对称图形,解答此题要注意平移:①方向;②距离.整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动,求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点,然后依次连结各对称点即可。
23.见详解
【分析】
(1)将小鱼的各个顶点向上平移4格,然后连线即可。
(2)在(1)的基础上再将小鱼向左平移5个即可。
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴
解析:见详解
【分析】
(1)将小鱼的各个顶点向上平移4格,然后连线即可。
(2)在(1)的基础上再将小鱼向左平移5个即可。
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的另一边画出左图的对称点,依次连结即可。
【详解】
由分析可知,如图所示:
【点睛】
本题是考查作轴对称图形,关键是把对称点的位置画正确。
24.见详解
【分析】
(1)画对称轴的步骤:找出轴对称图形的任意一组对称点;连结对称点;画出对称点所连线段的垂直平分线,就可以得到该图形的对称轴。
(2)作旋转一定角度后的图形步骤:根据题目要求,确定旋
解析:见详解
【分析】
(1)画对称轴的步骤:找出轴对称图形的任意一组对称点;连结对称点;画出对称点所连线段的垂直平分线,就可以得到该图形的对称轴。
(2)作旋转一定角度后的图形步骤:根据题目要求,确定旋转中心、旋转方向和旋转角;分析所作图形,找出构成图形的关键点;找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;作出新图形,顺次连接作出的各点即可。
(3)作平移后的图形步骤:找点-找出构成图形的关键点;定方向、距离-确定平移方向和平移距离;画线-过关键点沿平移方向画出平行线;定点-由平移的距离确定关键点平移后的对应点的位置;连点-连接对应点
【详解】
【点睛】
决定平移后图形的位置的要素:一是平移的方向,二是平移的距离。决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
25.(1)20,40
(2)15千米/时
【分析】
在表示路程和时间的行程问题的折线统计图中,折线上升,表示向目的地运动;折线呈水平方向,表示在某地停留,折线下降,表示向出发地运动。据此可解答。
【详解
解析:(1)20,40
(2)15千米/时
【分析】
在表示路程和时间的行程问题的折线统计图中,折线上升,表示向目的地运动;折线呈水平方向,表示在某地停留,折线下降,表示向出发地运动。据此可解答。
【详解】
(1)40-20=20(分钟),100-60=40(分钟)
小华去图书馆的路上停车(20)分钟,在图书馆借书用了(40)分钟。
(2)120-100=20(分钟)=(小时)
5÷=15(千米/时)
答:小华骑车从图书馆返回家的平均速度是15(千米/时)。
【点睛】
本题考查有关行程的折线统计图,明确上升、水平、下降所表示的含义是解题的关键。
26.(1)176平方分米 (2)4dm2
【解析】
【详解】
略
解析:(1)176平方分米 (2)4dm2
【解析】
【详解】
略
27.(1)见详解;
(2)从统计图中,可以判断这是夏季,因为气温比较高。
【分析】
(1)根据统计表中的信息先描点,再依次连接各个点即可;
(2)观察统计表中的数据,联系生活实际,这些数据都比较高,应属
解析:(1)见详解;
(2)从统计图中,可以判断这是夏季,因为气温比较高。
【分析】
(1)根据统计表中的信息先描点,再依次连接各个点即可;
(2)观察统计表中的数据,联系生活实际,这些数据都比较高,应属于夏季。
【详解】
(1)据分析可作图如下:
(2)从统计图中,可以判断这是夏季,因为气温比较高。
【点睛】
具有一定的生活经验,掌握画折线统计图的方法,先描点再连线,这是解决此题的关键。
28.(1)见详解
(2)乙
【分析】
(1)根据统计表提供的数据,绘制统计图;
(2)根据统计图提供的信息,选出哪位同学参加比赛。
【详解】
(1)
(2)根据统计图可知,乙同学的投篮成绩逐步上升,选
解析:(1)见详解
(2)乙
【分析】
(1)根据统计表提供的数据,绘制统计图;
(2)根据统计图提供的信息,选出哪位同学参加比赛。
【详解】
(1)
(2)根据统计图可知,乙同学的投篮成绩逐步上升,选乙同学参加比赛。
【点睛】
本题考查折线统计图的绘制,以及根据统计图提供的信息,解答问题。
展开阅读全文