收藏 分销(赏)

人教中学七年级下册数学期末质量监测试卷含答案.doc

上传人:a199****6536 文档编号:1920266 上传时间:2024-05-11 格式:DOC 页数:24 大小:420.54KB 下载积分:10 金币
下载 相关 举报
人教中学七年级下册数学期末质量监测试卷含答案.doc_第1页
第1页 / 共24页
人教中学七年级下册数学期末质量监测试卷含答案.doc_第2页
第2页 / 共24页


点击查看更多>>
资源描述
人教中学七年级下册数学期末质量监测试卷含答案 一、选择题 1.的平方根是() A.- B. C. D. 2.把“笑脸”进行平移,能得到的图形是( ) A. B. C. D. 3.在平面直角坐标系中,点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.下列命题中假命题的是( ) A.同旁内角互补,两直线平行 B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行 C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直 5.如图,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b中的直线b上,已知,则的度数为 A. B. C. D. 6.如图,下列各数中,数轴上点A表示的可能是( ) A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根 7.如图,已知直线,的平分线交于点F,,则等于( ) A. B. C. D. 8.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点;第二分钟,它从点运动到点,而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是( ) A. B. C. D. 九、填空题 9.计算:﹣=_____. 十、填空题 10.已知点与点关于轴对称,那么________. 十一、填空题 11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________. 十二、填空题 12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______. 十三、填空题 13.如图所示是一张长方形形状的纸条,,则的度数为__________. 十四、填空题 14.已知a,b为两个连续的整数,且,则的平方根为___________. 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为______. 十七、解答题 17.计算下列各式的值: (1) (2) 十八、解答题 18.求下列各式中x的值. (1)x2﹣81=0; (2)2x2﹣16=0; (3)(x﹣2)3=﹣27. 十九、解答题 19.完成下面的说理过程:如图,在四边形中,E、F分别是,延长线上的点,连接,分别交,于点G、H.已知,,对和说明理由. 理由:∵(已知), ( ), ∴(等量代换). ∴( ). ∵( ). ∵(已知), ∴.( ). ∴( ). 二十、解答题 20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中 (1)A→C(   ,   ),B→D(   ,   ),C→   (+1,   ); (2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置. 二十一、解答题 21.若整数的两个平方根为,;为的整数部分. (1)求及的值; (2)求的立方根. 二十二、解答题 22.如图是一块正方形纸片. (1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为   dm. (2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆   C正(填“=”或“<”或“>”号) (3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由? 二十三、解答题 23.阅读下面材料: 小亮同学遇到这样一个问题: 已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED. 求证:∠BED=∠B+∠D. (1)小亮写出了该问题的证明,请你帮他把证明过程补充完整. 证明:过点E作EFAB, 则有∠BEF= . ∵ABCD, ∴ , ∴∠FED= . ∴∠BED=∠BEF+∠FED=∠B+∠D. (2)请你参考小亮思考问题的方法,解决问题:如图乙, 已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E. ①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数; ②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示). 二十四、解答题 24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且. (1)填空:_________; (2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行? (3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 二十五、解答题 25.(生活常识) 射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 . (现象解释) 如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD. (尝试探究) 如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小. (深入思考) 如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果) 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据平方根的定义(如果一个数的平方等于,那么这个数叫做的平方根)即可得. 【详解】 解:因为, 所以的平方根是, 故选:C. 【点睛】 本题考查了平方根,熟练掌握平方根的定义是解题关键. 2.D 【分析】 根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】 解:观察图形可知图形进行平移,能得到图形D. 故选:D. 【点睛】 本题考查了图形的平移,图形的平移只改 解析:D 【分析】 根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断. 【详解】 解:观察图形可知图形进行平移,能得到图形D. 故选:D. 【点睛】 本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.B 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 解:点A(-3,2)在第二象限, 故选:B. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.D 【分析】 根据平行线的判定定理逐项分析即可判断. 【详解】 A. 同旁内角互补,两直线平行,是真命题,不符合题意; B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意; C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意; D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意; 故选D 【点睛】 本题考查了真假命题的判断,掌握相关定理与性质是解题的关键. 5.B 【分析】 先根据平行线的性质求出∠1的同位角,再由两角互余的性质求出∠2的度数即可; 【详解】 ∵直线a∥b,∠1=55°, ∴∠1=∠3=55°, ∵三角板的直角顶点放在b上, ∴∠3+∠2=90°, ∴∠2=90°-55°=35°, 故选:B. 【点睛】 本题考查了平行线的性质,即两直线平行,同位角相等以及互余的两角,正确掌握知识点是解题的关键; 6.C 【详解】 解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2, 故根据数轴可知, 故选C 7.B 【分析】 根据平行线的性质推出,,然后结合角平分线的定义求解即可得出,从而得出结论. 【详解】 解:∵, ∴,, ∵的平分线交于点F, ∴, ∴, ∴, 故选:B. 【点睛】 本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键. 8.B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2× 解析:B 【分析】 找出粒子运动规律和坐标之间的关系即可解题. 【详解】 解:由题知(0,0)表示粒子运动了0分钟, (1,1)表示粒子运动了2=1×2分钟,将向左运动, (2,2)表示粒子运动了6=2×3分钟,将向下运动, (3,3)表示粒子运动了12=3×4分钟,将向左运动, ... 于是会出现: (44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动, ∴在第2021分钟时,粒子又向下移动了2021−1980=41个单位长度, ∴粒子的位置为(44,3), 故选:B. 【点睛】 本题考查的是动点坐标问题,解题的关键是找出粒子的运动规律. 九、填空题 9.﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 解析:﹣3. 【详解】 试题分析:根据算术平方根的定义﹣=﹣3. 故答案是﹣3. 考点:算术平方根. 十、填空题 10.0; 【分析】 平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】 解:根据对称的性质,得, 解得. 故答案为:0. 【点睛】 考查了关于轴、轴对称的点的坐标, 解析:0; 【分析】 平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可. 【详解】 解:根据对称的性质,得, 解得. 故答案为:0. 【点睛】 考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆. 十一、填空题 11.120° 【分析】 由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB= 解析:120° 【分析】 由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°. 【详解】 ∵∠A=60°, ∴∠ABC+∠ACB=120°, ∵BO平分∠ABC,CO平分∠ACB, ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=∠ABC+∠ACB=60°, ∴∠BOC=180°-∠OBC-∠OCB=120° 故答案为120° 【点睛】 本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理 十二、填空题 12.36° 【分析】 如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可. 【详解】 解:如图,∵三角尺的两边a∥b, ∴∠3=∠2=54º, ∴∠1=180°-90°-∠3=36°. 故 解析:36° 【分析】 如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可. 【详解】 解:如图,∵三角尺的两边a∥b, ∴∠3=∠2=54º, ∴∠1=180°-90°-∠3=36°. 故答案为:36°. 【点睛】 本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键. 十三、填空题 13.5° 【分析】 根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可. 【详解】 解:∵AB∥CD, ∴∠1+∠3=180°, ∵∠1=105°, ∴∠3= 解析:5° 【分析】 根据平行线的性质可得∠3的度数,再根据邻补交的性质可得∠2=(180°-∠3)÷2进行计算即可. 【详解】 解:∵AB∥CD, ∴∠1+∠3=180°, ∵∠1=105°, ∴∠3=180°-105°=75°, ∴∠2=(180°-75°)÷2=52.5°, 故答案为:52.5°. 【点睛】 此题主要考查了平行线的性质,关键是找准折叠后哪些角是对应相等的. 十四、填空题 14.±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平 解析:±3 【分析】 分别算出a,b计算即可; 【详解】 ∵a,b为两个连续的整数,且, ∴, ∴, ∴,, ∴, ∴的平方根为±3; 故答案是:±3. 【点睛】 本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点 解析:(4,3) 【分析】 按照反弹规律依次画图即可. 【详解】 解:如图: 根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环, 2021÷6=336…5, 即点P2021的坐标是(4,3). 故答案为:(4,3). 【点睛】 本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律. 十七、解答题 17.(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考 解析:(1);(2) 【分析】 (1)先求绝对值,同时利用计算,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可. 【详解】 解:(1) (2) 【点睛】 本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 十八、解答题 18.(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可; (3)利用立方根的定义求解即可. 【详解】 解:(1) 解析:(1)x=±9;(2);(3)x=﹣1. 【分析】 (1)式子整理后,利用平方根的定义求解即可; (2)式子整理后,利用平方根的定义求解即可; (3)利用立方根的定义求解即可. 【详解】 解:(1)x2﹣81=0, x2=81, x=±9; (2)2x2﹣16=0, 2x2=16, x2=8, ; (3)(x﹣2)3=﹣27, x﹣2=﹣3, x=2﹣3, x=﹣1. 【点睛】 本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a,熟记相关定义是解答本题的关键. 十九、解答题 19.对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直 解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD. 【详解】 证明:∵∠1=∠2(已知) ∠1=∠AGH(对顶角相等) ∴∠2=∠AGH(等量代换) ∴AD∥BC(同位角相等,两直线平行) ∴∠ADE=∠C(两直线平行,同位角相等) ∵∠A=∠C(已知) ∴∠ADE=∠A ∴AB∥CD(内错角相等,两直线平行). 【点睛】 本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系. 二十、解答题 20.(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3 解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析 【分析】 (1)根据向上向右走为正,向下向左走为负,可得答案; (2)根据向上向右走为正,向下向左走为负,可得答案. 【详解】 解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2); 故答案为3,4;3,﹣2;D,﹣2; (2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图 【点睛】 本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键. 二十一、解答题 21.(1)a=4,m=36;(2)6 【分析】 (1)根据平方根的性质得到,求出a值,从而得到m; (2)估算出的范围,得到b值,代入求出,从而得到的立方根. 【详解】 解:(1)∵整数的两个平方根为, 解析:(1)a=4,m=36;(2)6 【分析】 (1)根据平方根的性质得到,求出a值,从而得到m; (2)估算出的范围,得到b值,代入求出,从而得到的立方根. 【详解】 解:(1)∵整数的两个平方根为,, ∴, 解得:, ∴, ∴m=36; (2)∵为的整数部分, ∴, ∴, ∴b=9, ∴, ∴的立方根为6. 【点睛】 本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义. 二十二、解答题 22.(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采 解析:(1);(2)<;(3)不能;理由见解析. 【分析】 (1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可. 【详解】 解:(1)由已知AB2=1,则AB=1, 由勾股定理,AC=; 故答案为:. (2)由圆面积公式,可得圆半径为,周长为,正方形周长为4. ;即C圆<C正; 故答案为:< (3)不能; 由已知设长方形长和宽为3xcm和2xcm ∴长方形面积为:2x•3x=12 解得x= ∴长方形长边为3>4 ∴他不能裁出. 【点睛】 本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键. 二十三、解答题 23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°, 解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣ 【分析】 (1)根据平行线的判定定理与性质定理解答即可; (2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数; ②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数. 【详解】 解:(1)过点E作EF∥AB, 则有∠BEF=∠B, ∵AB∥CD, ∴EF∥CD, ∴∠FED=∠D, ∴∠BED=∠BEF+∠FED=∠B+∠D; 故答案为:∠B;EF;CD;∠D; (2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA. ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=∠EBA+∠EDC. 即∠BED=∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°, ∴∠BED=∠EBA+∠EDC=65°. 答:∠BED的度数为65°; ②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°. ∴∠BEF=180°﹣∠EBA, ∵AB∥CD, ∴EF∥CD. ∴∠FED=∠EDC. ∴∠BEF+∠FED=180°﹣∠EBA+∠EDC. 即∠BED=180°﹣∠EBA+∠EDC, ∵BE平分∠ABC,DE平分∠ADC, ∴∠EBA=∠ABC=,∠EDC=∠ADC=, ∴∠BED=180°﹣∠EBA+∠EDC=180°﹣. 答:∠BED的度数为180°﹣. 【点睛】 本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 二十四、解答题 24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒, 解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD 【分析】 (1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数; (2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110; (3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化. 【详解】 解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2, ∴∠BAN=180°×=72°, 故答案为:72; (2)设A灯转动t秒,两灯的光束互相平行, ①当0<t<90时,如图1, ∵PQ∥MN, ∴∠PBD=∠BDA, ∵AC∥BD, ∴∠CAM=∠BDA, ∴∠CAM=∠PBD ∴2t=1•(30+t), 解得 t=30; ②当90<t<150时,如图2, ∵PQ∥MN, ∴∠PBD+∠BDA=180°, ∵AC∥BD, ∴∠CAN=∠BDA ∴∠PBD+∠CAN=180° ∴1•(30+t)+(2t-180)=180, 解得 t=110, 综上所述,当t=30秒或110秒时,两灯的光束互相平行; (3)∠BAC和∠BCD关系不会变化. 理由:设灯A射线转动时间为t秒, ∵∠CAN=180°-2t, ∴∠BAC=72°-(180°-2t)=2t-108°, 又∵∠ABC=108°-t, ∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°, ∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°, ∴∠BAC:∠BCD=2:1, 即∠BAC=2∠BCD, ∴∠BAC和∠BCD关系不会变化. 【点睛】 本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补. 二十五、解答题 25.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠ 解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD; [尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°; [深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α. 【详解】 [现象解释] 如图2, ∵OM⊥ON, ∴∠CON=90°, ∴∠2+∠3=90° ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=180°, ∴∠DCB+∠ABC=180°, ∴AB∥CD; 【尝试探究】 如图3, 在△OBC中,∵∠COB=55°, ∴∠2+∠3=125°, ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=250°, ∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°, ∴∠EBC+BCE=360°-250°=110°, ∴∠BEC=180°-110°=70°; 【深入思考】 如图4, β=2α, 理由如下:∵∠1=∠2,∠3=∠4, ∴∠ABC=180°-2∠2,∠BCD=180°-2∠3, ∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β, ∵∠BOC=∠3-∠2=α, ∴β=2α. 【点睛】 本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服