资源描述
平面向量
一、知识温故
1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.
2.向量的表示方法:①用有向线段表示;②用字母、等表示;③平面向量的坐标表示:分别取与轴、轴方向相同的两个单位向量、作为基底。任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得,叫做向量的(直角)坐标,记作,其中叫做在轴上的坐标,叫做在轴上的坐标, 特别地,,,。;若,,则,
3.零向量、单位向量:①长度为0的向量叫零向量,记为; ②长度为1个单位长度的向量,叫单位向量.(注:就是单位向量)
4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行.向量、、平行,记作∥∥.共线向量与平行向量关系:平行向量就是共线向量.
5.相等向量:长度相等且方向相同的向量叫相等向量.
6.向量的加法、减法:
①求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。②向量的减法向量加上的相反向量,叫做与的差。即: -= + (-);
差向量的意义: = , =, 则=-
③平面向量的坐标运算:若,,则,,。
④向量加法的交换律:+=+;向量加法的结合律:(+) +=+ (+)
7.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=;(3)运算定律 λ(μ)=(λμ),(λ+μ)=λ+μ,λ(+)=λ+λ
8. 向量共线定理 向量与非零向量共线(也是平行)的充要条件是:有且只有一个非零实数λ,使=λ。
9.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2。(1)不共线向量、叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量在给出基底、的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量。
10. 向量和的数量积:①·=| |·||cos,其中∈[0,π]为和的夹角。②||cos称为在的方向上的投影。③·的几何意义是:的长度||在的方向上的投影的乘积,是一个实数(可正、可负、也可是零),而不是向量。
④若 =(,), =(x2,), 则
⑤运算律:a· b=b·a, (λa)· b=a·(λb)=λ(a·b), (a+b)·c=a·c+b·c。
⑥和的夹角公式:cos==
⑦||2=x2+y2,或||=⑧| a·b |≤| a |·| b |。
11.两向量平行、垂直的充要条件 设 =(,), =(,)
①a⊥ba·b=0 ,=+=0;
②(≠)充要条件是:有且只有一个非零实数λ,使=λ。
向量的平行与垂直的坐标运算注意区别,在解题时容易混淆。
12.点P分有向线段所成的比的: ,P内分线段时, ; P外分线段时, . 定比分点坐标公式、中点坐标公式、三角形重心公式:
、、
二、经典范例
考点一:向量的概念、向量的基本定理
【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
如果和是同一平面内的两个不共线向量,那么对该平面内的任一向量有且只有一对实数λ1、λ2,使=λ1+λ2.注意:若和是同一平面内的两个不共线向量.
【命题规律】有关向量概念和向量的基本定理的命题,主要以选择题或填空题为主,考查的难度属中档类型。
例1、(2007上海)直角坐标系中,分别是与轴正方向同向的单位向量.在直角三角形中,若,则的可能值个数是( )
A.1 B.2 C.3 D.4
例2、(2007陕西)如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=||=1,
|| =,若=λ+μ(λ,μ∈R),则λ+μ的值为 .
点评:本题考查平面向量的基本定理,向量OC用向量OA与向量OB作为基底表示出来后,求相应的系数,也考查了平行四边形法则。
考点二:向量的运算
【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。
【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
例3、(2008湖北文、理)设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=( )
A.(-15,12) B.0 C.-3 D.-11
点评:本题考查向量与实数的积,注意积的结果还是一个向量,向量的加法运算,结果也是一个向量,还考查了向量的数量积,结果是一个数字。
例4、(2008广东文)已知平面向量,且∥,则=( )
A.(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10)
点评:两个向量平行,其实是一个向量是另一个向量的倍,也是共线向量,注意运算的公式,容易与向量垂直的坐标运算混淆。
例5、(2008海南、宁夏文)已知平面向量=(1,-3),=(4,-2),与垂直,则是( )
A. -1 B. 1 C. -2 D. 2
点评:本题考查简单的向量运算及向量垂直的坐标运算,注意不要出现运算出错,因为这是一道基础题,要争取满分。
例6、(2008广东理)在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F. 若, ,则( )
A. B. C. D.
点评:用三角形法则或平行四边形法则进行向量的加减法运算是向量运算的一个难点,体现数形结合的数学思想。
例7、(2008江苏)已知向量和的夹角为,,则 .
点评:向量的模、向量的数量积的运算是经常考查的内容,难度不大,只要细心,运算不要出现错误即可。
:
考点三:定比分点
【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。
【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。
例8、(2008湖南理)设D、E、F分别是△ABC的三边BC、CA、AB上的点,且则与( )
A.反向平行 B.同向平行 C.互相垂直 D.既不平行也不垂直
点评:利用定比分点的向量式,及向量的运算,是解决本题的要点.
考点四:向量与三角函数的综合问题
【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。
【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
例9、(2008深圳福田等)已知向量 ,函数
(1)求的最小正周期; (2)当时, 若求的值.
点评:向量与三角函数的综合问题是当前的一个热点,但通常难度不大,一般就是以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,而考查的主体部分则是三角函数的恒等变换,以及解三角形等知识点.
例10、(2007山东文)在中,角的对边分别为.
(1)求;
(2)若,且,求.
点评:本题向量与解三角形的内容相结合,考查向量的数量积,余弦定理等内容。
例11、(2007湖北)将的图象按向量平移,则平移后所得图象的解析式为( )
A. B.C. D.
点评:本题主要考察向量与三角函数图像的平移的基本知识,以平移公式切入,为中档题。注意不要将向量与对应点的顺序搞反,或死记硬背以为是先向右平移个单位,再向下平移2个单位,误选C
考点五:平面向量与函数问题的交汇
【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
【命题规律】命题多以解答题为主,属中档题。
例12、(2008广东六校联考)已知向量=(cosx,sinx),=(),且x∈[0,].
(1)求
(2)设函数+,求函数的最值及相应的的值。
点评:本题考查向量、三角函数、二次函数的知识,经过配方后,变成开口向下的二次函数图象,要注意sinx的取值范围,否则容易搞错。
考点六:平面向量在平面几何中的应用
O
x
A
C
B
a
例13图
y
A
C
B
a
Q
P
【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.
【命题规律】命题多以解答题为主,属中等偏难的试题。
例13、如图在RtABC中,已知BC=a,若长为2a的线段PQ以A为中点,问与的夹角取何值时, 的值最大?并求出这个最大值。
点评:本题主要考查向量的概念,运算法则及函数的有关知识,平面向量与几何问题的融合。考查学生运用向量知识解决综合问题的能力。
三、过关测试:
一、选择题
1.已知a,b均为单位向量,它们的夹角为60°,那么|a+3b|等于 ( )
A. B. C. D.4
2.在ABCD中,AC=,BD=,周长为18,则这个平行四边形的面积为 ( )
A.16 B.17 C.18 D.32
3.若向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72.则向量a的模是 ( )
A.2 B.4 C.6 D.12
4. 下列各向量中,与a=(3,2)垂直的向量是 ( )
A.b=(3,-2) B.b=(2,3) C.b=(-4,6) D.b=(-3,2)
5. 已知a⊥b,|a|=2,|b|=3,且3a+2b与λa-b垂直,则λ等于 ( )
A. B.- C.± D.1
6. 已知m,n是夹角为60°的两个单位向量,则a=2m+n和b=-3m+2n的夹角是 ( )
A.30° B.60° C.120° D.150°
7 .在四边形ABCD中,,,,则四边形ABCD的形状是 ( )
A.长方形 B.平行四边形 C.菱形 D.梯形
8.O是平面上一点,A,B,C是该平面上不共线的三个点,一动点P满足+,λ∈(0,+∞),则直线AP一定通过△ABC的 ( )
A.内心 B.外心 C.重心 D.垂心
二、填空题
8.已知A(1,3)、B(2,4)、C(5,6),则= .
9.已知=0,的夹角为 .
10.已知e为单位向量,|a|=4,a与e的夹角为π,则a在e方向上的投影是 .
11.已知a=(4,3),b=(-1,2),则a与b的夹角为 .
12.平面向量a,b中,已知a=(4,-3),|b|=1,且a·b=5,则向量b= .
三、解答题
13.已知|a|=4,|b|=5,当
(1)a∥b;
(2)a⊥b;
(3)a与b的夹角为60°时,分别求a与b的数量积.
14. 求证:三角形ABC的三条高线AD、BE、CF交于一点H.
15.已知向量a=(1,1),b=(1,0),c满足a·c=0且|a|=|c|,b·c>0.
(1)求向量c;
(2)若映射f:(x,y)→(x1,y1)=xa+yc,求映射f下(1,2)的原象.
16. 设O是△ABC的外心,H是三角形内一点,且,求证:H是△ABC的垂心.
例题参考答案:
例1:解:如图,将A放在坐标原点,则B点坐标为(2,1),C点坐标为(3,k),所以C点在直线x=3上,由图知,只可能A、B为直角,C不可能为直角.所以 k 的可能值个数是2,选B
点评:本题主要考查向量的坐标表示,采用数形结合法,巧妙求解,体现平面向量中的数形结合思想。
例2:解:过C作与的平行线与它们的延长线相交,可得平行四边形,由角BOC=90°角AOC=30°,=得平行四边形的边长为2和4,2+4=6
例3:解:(a+2b),(a+2b)·c ,选C
例4:解:由∥,得m=-4,所以,=(2,4)+(-6,-12)=(-4,-8),故选(C)。
例5:解:由于∴,即,选A
例6:
解:,,,由A、E、F三点共线,知而满足此条件的选择支只有B,故选B.
例7:解:=,7
例8:解:由定比分点的向量式得:同理,有:
以上三式相加得
所以选A.
例9:解:(1) . 所以,T=.
(2) 由得,∵,∴ ∴ ∴
例10:解:(1)又 解得.
,是锐角. .
(2)由, , . . .. .
例11:解: 由向量平移的定义,在平移前、后的图像上任意取一对对应点,,则,代入到已知解析式中可得选A
例12:解:(I)由已知条件: , 得:
(2)
因为:,所以:所以,只有当: 时,
,或时,
例13:解:以直角顶点A为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系。设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b).且|PQ|=2a,|BC|=a.设点P的坐标为(x,y),则Q(-x,-y),
∴cx-by=a2cos.∴=- a2+ a2cos.故当cos=1,即=0(方向相同)时,的值最大,其最大值为0. 3、通过活动,使学生养成博览群书的好习惯。
B比率分析法和比较分析法不能测算出各因素的影响程度。√
C采用约当产量比例法,分配原材料费用与分配加工费用所用的完工率都是一致的。X
C采用直接分配法分配辅助生产费用时,应考虑各辅助生产车间之间相互提供产品或劳务的情况。错
C产品的实际生产成本包括废品损失和停工损失。√
C成本报表是对外报告的会计报表。×
C成本分析的首要程序是发现问题、分析原因。×
C成本会计的对象是指成本核算。×
C成本计算的辅助方法一般应与基本方法结合使用而不单独使用。√
C成本计算方法中的最基本的方法是分步法。X
D当车间生产多种产品时,“废品损失”、“停工损失”的借方余额,月末均直接记入该产品的产品成本
中。×
D定额法是为了简化成本计算而采用的一种成本计算方法。×
F“废品损失”账户月末没有余额。√
F废品损失是指在生产过程中发现和入库后发现的不可修复废品的生产成本和可修复废品的修复费用。X
F分步法的一个重要特点是各步骤之间要进行成本结转。(√)
G各月末在产品数量变化不大的产品,可不计算月末在产品成本。错
G工资费用就是成本项目。(×)
G归集在基本生产车间的制造费用最后均应分配计入产品成本中。对
J计算计时工资费用,应以考勤记录中的工作时间记录为依据。(√)
J简化的分批法就是不计算在产品成本的分批法。(×)
J简化分批法是不分批计算在产品成本的方法。对
J加班加点工资既可能是直接计人费用,又可能是间接计人费用。√
J接生产工艺过程的特点,工业企业的生产可分为大量生产、成批生产和单件生产三种,X
K可修复废品是指技术上可以修复使用的废品。错
K可修复废品是指经过修理可以使用,而不管修复费用在经济上是否合算的废品。X
P品种法只适用于大量大批的单步骤生产的企业。×
Q企业的制造费用一定要通过“制造费用”科目核算。X
Q企业职工的医药费、医务部门、职工浴室等部门职工的工资,均应通过“应付工资”科目核算。X
S生产车间耗用的材料,全部计入“直接材料”成本项目。X
S适应生产特点和管理要求,采用适当的成本计算方法,是成本核算的基础工作。(×)
W完工产品费用等于月初在产品费用加本月生产费用减月末在产品费用。对
Y“预提费用”可能出现借方余额,其性质属于资产,实际上是待摊费用。对
Y引起资产和负债同时减少的支出是费用性支出。X
Y以应付票据去偿付购买材料的费用,是成本性支出。X
Y原材料分工序一次投入与原材料在每道工序陆续投入,其完工率的计算方法是完全一致的。X
Y运用连环替代法进行分析,即使随意改变各构成因素的替换顺序,各因素的影响结果加总后仍等于指标的总差异,因此更换各因索替换顺序,不会影响分析的结果。(×)
Z在产品品种规格繁多的情况下,应该采用分类法计算产品成本。对
Z直接生产费用就是直接计人费用。X
Z逐步结转分步法也称为计列半成品分步法。√
A按年度计划分配率分配制造费用,“制造费用”账户月末(可能有月末余额/可能有借方余额/可能有贷方余额/可能无月末余额)。
A按年度计划分配率分配制造费用的方法适用于(季节性生产企业)
展开阅读全文