1、人教版中学七年级下册数学期末质量监测含答案完整一、选择题1的平方根是()ABCD2北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的在下面如图的四个图中,能由如图经过平移得到的是( )ABCD3已知点P的坐标为P(3,5),则点P在第()象限A一B二C三D四4下列命题中假命题有( )两条直线被第三条直线所截,同位角相等如果两条直线都与第三条直线平行,那么这两条直线也互相平行点到直线的垂线段叫做点到直线的距离过一点有且只有一条直线与已知直线平行若两条直线都与第三条直线垂直,则这两条直线互相平行A5个B4个C3个D2个5将一副三角板按如图放置,如果,则有是( )A15B30C45D606如图,
2、数轴上的点A所表示的数为x,则x210的立方根为()A10B10C2D27如图,若,则的度数是( )A40B60C140D1608如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是()A(2020,1)B(2021,0)C(2021,1)D(2022,0)九、填空题9_十、填空题10已知点与点关于轴对称,那么点关于轴的对称点的坐标为_十一、填空题11如图,ABC中BAC60,将ACD沿AD折叠,使得点C落在AB上的点C处,连接CD与CC,ACB的角平分
3、线交AD于点E;如果BCDC;那么下列结论:12;AD垂直平分CC;B3BCC;DCEC;其中正确的是:_;(只填写序号)十二、填空题12如图,直线ab,直角三角形的直角顶点在直线b上,已知1=48,则2的度数是_度十三、填空题13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_十四、填空题14已知M是满足不等式的所有整数的和,N是满足不等式x的最大整数,则MN的平方根为_十五、填空题15已知,则_十六、填空题16如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,
4、的等腰直角三角形若三角形的顶点坐标分别为,则按图中规律,点的坐标为_十七、解答题17计算: (1) (2)十八、解答题18求下列各式中的x值:(1)169x2144;(2)(x2)2360.十九、解答题19如图,三角形中,点,分别是,上的点,且,(1)求证:;(完成以下填空)证明:(已知)(_),又(已知)(等量代换),(_)(2)与的平分线交于点,交于点,若,则_;已知,求(用含的式子表示)二十、解答题20在图所示的平面直角坐标系中表示下面各点:;(1)点到原点的距离是_;(2)将点向轴的负方向平移个单位,则它与点_重合;(3)连接,则直线与轴是什么关系?(4)点分别到、轴的距离是多少?二十
5、一、解答题21例如即,的整数部分为2,小数部分为,仿照上例回答下列问题;(1)介于连续的两个整数a和b之间,且ab,那么a ,b ;(2)x是的小数部分,y是的整数部分,求x ,y ;(3)求的平方根二十二、解答题22已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和二十三、解答题23如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数
6、(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间二十四、解答题24课题学习:平行线的“等角转化”功能阅读理解:如图1,已知点A是BC外一点,连接AB,AC,求BACBC的度数(1)阅读并补充下面推理过程解:过点A作EDBC,BEAB,C 又EABBACDAC180BBACC180解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将BAC,B,C“凑”在一起,得出角之间的关系,使问题得
7、以解决方法运用:(2)如图2,已知ABED,求BBCDD的度数(提示:过点C作CFAB)深化拓展:(3)如图3,已知ABCD,点C在点D的右侧,ADC70,点B在点A的左侧,ABC60,BE平分ABC,DE平分ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求BED的度数二十五、解答题25己知:如图,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ;(2)如图,若,作的平分线交于,交于,试说明; (3)如图,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若
8、变化,求出变化范围.【参考答案】一、选择题1A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作【详解】解:的平方根是故选A【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根2C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A是旋转180后图形,故选项A不合题意;B是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答【详解】解:观察各
9、选项图形只改变图形的位置,不改变图形的形状与大小可知,A是旋转180后图形,故选项A不合题意;B是轴对称图形,故选项B不合题意;C选项的图案可以通过平移得到故选项C符合题意;D是轴对称图形,故选项D不符合题意故选:C【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键3D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可【详解】解:点P的坐标为P(3,5),点P在第四象限故选D【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-)4B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可【详解
10、】解:两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内 故选B【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义5C【分析】根据一副三角板的特征先得到E=60,C=45,1+2=90,再根据已知求出1=60,从而可证得ACDE,再根据平行线的性质即可求出4的度数【详解】解:根据题
11、意可知:E=60,C=45,1+2=90,1=60,1=E,ACDE,4=C=45故选:C【点睛】本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键6D【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方根【详解】根据图象:直角三角形两边长分别为2和1,x在数轴原点左面,则,则它的立方根为;故选:D【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数7A【分析】根据平行线的性质求出C,再根据平行线的性质求出B即可【详解】解:BCDE,
12、CDE=140,C=180-140=40,ABCD,B=40,故选:A【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补8C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标【详解】半径为1个单位长度的半圆的周长为:,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标【详解】半径为1个单位长度的半圆的周长为:,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,点P1秒走个半圆,当点
13、P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),可得移动4次图象完成一个循环,20214=5051,点P运动到2021秒时的坐标是(2021,1),故选:C【
14、点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题九、填空题913【分析】根据求解即可【详解】解:,故答案为:13【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键解析:13【分析】根据求解即可【详解】解:,故答案为:13【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键十、填空题10【分析】先将a,b求出来,再根据对称性求出坐标即可【详解】根据题意可得:3=b,2a-1=3.解得a=2,b=3P(2,3)关于y轴对称的点(2,3)故答案为: (2,解析:【分析】先将a,b求出来,再根据
15、对称性求出坐标即可【详解】根据题意可得:3=b,2a-1=3.解得a=2,b=3P(2,3)关于y轴对称的点(2,3)故答案为: (2,3)【点睛】本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键十一、填空题11【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC解析:【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,ACD沿AD折叠,使得点C落在AB上的点C处,1=2,A=AC,DC=D,AD垂直平分CC;,都正
16、确;BD, DC=D,BD= DC,3=B,4=5,3=4+5=25即B2BC;错误;根据折叠的性质,得ACD=AD=B+3=23,ACB的角平分线交AD于点E,2(6+5)=2B, D EC正确;故答案为:.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.十二、填空题1242【分析】利用平行线的性质,平角的性质解决问题即可【详解】解:4=90,1=48,3=90-1=42,ab,2=3=42,故答案为:42【点解析:42【分析】利用平行线的性质,平角的性质解决问题即可【详解】解:4=90,1=48,3=90-1=42,ab,2=
17、3=42,故答案为:42【点睛】本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型十三、填空题13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行四边形,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AEFEFC,GEFAEFE
18、FC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键十四、填空题142【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案【详解】解:M是满足不等式的所有整数a的和,M10122,N是满足不等式x的解析:2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案【详解】解:M是满足不等式的所有整数a的和,M
19、10122,N是满足不等式x的最大整数,N2,MN的平方根为:2故答案为:2【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键十五、填空题1511【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可【详解】解:如图示,根据,三点坐标建立坐标系得:则故答案为:11【点睛】此题考查利用直角坐标系求三角形的解析:11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可【详解】解:如图示,根据,三点坐标建立坐标系得:则故答案为:11【点睛】此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答十六、填空题16【分析】
20、根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边解析:【分析】根据题意可以知道A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得 A7A8A9的斜边长为8 ,A3A4A5的斜边长为4,A5A6A7的斜边长为6A7A9=8,A5A7=6,A3A5=4A3A7= A5A7- A3A5=2A3A7= A7A9- A3A7=6又A3与原点重合A9的坐标为(6,0)故答案为:(6,0).【点睛】本题主要考
21、查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.十七、解答题17(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1解析:(1) 3;(2) 2【解析】【分析】(1)原式利用平方根及立方根的定义化简,计算即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果【详解】解:(1)原式=-(2-4)6+3=+ +3=3;(2)原式= = 故答案为:(1)3;(2) 【点睛】本题考查实数的运算,熟练掌握运算法则是解题的关键
22、十八、解答题18(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.解析:(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.(2)(x2)2360,移项得:(x2)236,开方得:x-2=6或x-2=-6解得:x8或x4.故答案为(1)x;(2)x8或x4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.十九、解答题19(1)两直线平行,同位角相等;同位角
23、相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可计算出;根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出【详解】解:证明(1)证;证明:(已知),(两直线平行,同位角相等),又(已知)(等量代换),(同位角相等,两直线平行),故答案是:两直线平行,同位角相等;同位角相等,两直线平行(2)与的平
24、分线交于点,交于点,且,由(1)知,在中,故答案是:;,由(1)知,在中,故答案是:【点睛】本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解二十、解答题20(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移
25、6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值【详解】解:(1)A(0,3),A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)E(5,7),点E到x轴的距离是7,到y轴的距离是5【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式本题是综合题型,但难度不大二十一、解答题21(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入
26、中即可求出【详解】解:(1),故答案是:,;(解析:(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出【详解】解:(1),故答案是:,;(2),的小数部分为:,的整数部分为:3;故答案是:;(3),的平方根为:【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出二十二、解答题22(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形
27、的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表
28、示无理数是解题关键二十三、解答题23(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm
29、,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLM
30、N,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形
31、DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平
32、行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键二十四、解答题24(1)DAC;(2)360;(3)65【分析】(1)根据平行线的性质即可得到结论;(2)过C作CFAB根据平行线的性质得到D=FCD,B=BCF,然后根据已知条件即可得到结论;解析:(1)DAC;(2)360;(3)65【分析】(1)根据平行线的性质即可得到结论;(2)过C作CFAB根据平行线的性质得到D=FCD,B=BCF,然后根据已知条件即可得到结论;(3)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数【详解】解:(1)过点A作EDBC,B=EAB
33、,C=DCA,又EAB+BAC+DAC=180,B+BAC+C=180故答案为:DAC;(2)过C作CFAB,ABDE,CFDE,D=FCD,CFAB,B=BCF,BCF+BCD+DCF=360,B+BCD+D=360;(3)如图3,过点E作EFAB,ABCD,ABCDEF,ABE=BEF,CDE=DEF,BE平分ABC,DE平分ADC,ABC=60,ADC=70,ABE=ABC=30,CDE=ADC=35,BED=BEF+DEF=30+35=65【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算二十五、解答题25(1)3; (2)见解析; (3)见解析
34、【详解】分析:(1)因为BCD的高为OC,所以SBCD=CDOC,(2)利用CFE+CBF=90,OBE+OEB=90,求出CEF=解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为BCD的高为OC,所以SBCD=CDOC,(2)利用CFE+CBF=90,OBE+OEB=90,求出CEF=CFE(3)由ABC+ACB=2DAC,H+HCA=DAC,ACB=2HCA,求出ABC=2H,即可得答案详解:(1)SBCD=CDOC=32=3(2)如图,ACBC,BCF=90,CFE+CBF=90直线MN直线PQ,BOC=OBE+OEB=90BF是CBA的平分线,CBF=OBECEF=OBE,CFE+CBF=CEF+OBE,CEF=CFE(3)如图,直线lPQ,ADC=PADADC=DACCAP=2DACABC+ACB=CAP,ABC+ACB=2DACH+HCA=DAC,ABC+ACB=2H+2HCACH是,ACB的平分线,ACB=2HCA,ABC=2H,=点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解