1、人教版中学七年级下册数学期末质量监测题(附答案)一、选择题1实数4的算术平方根是()AB2CD162下列现象属于平移的是()A投篮时的篮球运动B随风飘动的树叶在空中的运动C刹车时汽车在地面上的滑动D冷水加热过程中小气泡变成大气泡3已知点在轴的负半轴上,则点在( )A第一象限B第二象限C第三象限D第四象限4下列语句中,是假命题的是()A有理数和无理数统称实数B在同一平面内,过一点有且只有一条直线与已知直线垂直C在同一平面内,垂直于同一条直线的两条直线互相平行D两个锐角的和是锐角5如图所示,三角板如图放置,其中,若,则的度数是( )ABCD6下列等式正确的是()ABCD7如图,将直尺与含45角的三
2、角尺叠放在一起,其两边与直尺相交,若125,则2的度数为()A120B135C150D1608如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为根据这个规律,第个点的坐标为( )ABCD九、填空题9已知 18.044,那么_十、填空题10在平面直角坐标系中,若点和点关于轴对称,则_十一、填空题11如图,已知/,和的角平分线交于点F,=_.十二、填空题12如图,已知ABCD,BCDE若A20,C105,则AED的度数是_十三、填空题13将一张长方形纸条ABCD沿EF折叠后,EC交AD于点G,若FGE62,则GFE的度数是_十四、填空题14已知的小数部分是,的小数部分是,则_十五、
3、填空题15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为_十六、填空题16如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点A出发,沿着ABCDAB.路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为_十七、解答题17(1); (2),求.十八、解答题18求下列各式中x的值:(1)(x+1)3270(2)(2x1)2250十九、解答题19阅读并完成下列的推理过程如图,在四边形ABCD中,E、F分别在线段AB、AD上,连结ED、EF,已知AFECDF,BCD+DEF180证明BCDE;证明:
4、AFECDF(已知)EFCD ( )DEFCDE( )BCD+DEF180( ) ( )BCDE( )二十、解答题20在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(2,1),(1,1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形ABC,请在图中画出平移后的三角形ABC,并分别写出点A,B,C的坐标二十一、解答题21阅读下面的文字,解答问题:是一个无理数,而无理数是无限不循环小数,因此的小数部分无法全部写
5、出来,但是我们可以想办法把它表示出来因为即,所以的整数部分为,将减去其整数部分后,得到的差就是小数部分,于是的小数部分为(1)求出的整数部分和小数部分;(2)求出的整数部分和小数部分;(3)如果的整数部分是,小数部分是,求出的值二十二、解答题22(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 (2)为了增加小区的绿化面积,幸福公园准备修建一个面积121m2的草坪,草坪周围用篱笆围绕现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,
6、审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21m2,请你根据此方案求出各小路的宽度(取整数)二十三、解答题23如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数二十四、解答题24已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点类似于
7、平面镜成像,点N关于镜面所成的镜像为点Q,此时(1)当点P在N右侧时:若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;(2)若镜像,求的度数二十五、解答题25如图1,已知ABCD,BE平分ABD,DE平分BDC(1)求证:BED90;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,EDF,ABF的角平分线与CDF的角平分线DG交于点G,试用含的式子表示BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,EBM的角平分线与FDN的角平分线交于点G,探究BGD与BFD之间的数量
8、关系,请直接写出结论:【参考答案】一、选择题1B解析:B【分析】根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0【详解】解:22=4,4的算术平方根是2故选B【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后
9、的形状和大小没有变化,只是位置发生变化【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象 ;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象; D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象故选:C【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键3A【分析】根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答【详解】点P(0,a)在y轴的负半轴上,点M(-a,-a+5)在第一象限故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各
10、象限内点的坐标的符号是解题的关键4D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键5B【分析】作BDl1,根据平行线的性质得1=ABD=40,CBD=2,利
11、用角的和差即可求解【详解】解:作BDl1,如图所示:BDl1,1=40,1=ABD=40,又l1l2,BDl2,CBD=2,又CBA=CBD+ABD=90,CBD=50,2=50故选:B【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线6C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B、表示计算算术平方根,所以,故错误C、,故正确D、,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7D【分析】如图,利用三角形的外角的性质求出3,再利用平行线的性质可得结论【详解】解:
12、如图,4=45,1=25,4=1+3,3=45-25=20,ab,2+3=180,2=180-20=160,故选:D【点睛】本题考查三角形外角的性质,平行线的性质等知识,解题的关键是学会添加常用辅助线,利用平行线的性质解决问题8A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案【详解】解:根据题意,第个点的坐标为:解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案【详解】解:根据题意,第个点的坐标为
13、: 第个点的坐标为 第个点的坐标为: 所以第个点的坐标为:, 第2025个数为: 第2021个数为第2025个数向上推4个数,即故选:A【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解九、填空题91.8044【详解】,即.故答案为1.8044解析:1.8044【详解】,即.故答案为1.8044十、填空题10【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故解析:【分析】关于y轴对称的点的特征是纵坐标不变,横坐
14、标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故答案为:【点睛】本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键十一、填空题11135;【分析】连接BD,根据三角形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180解析:135;【分析】连接BD,根据三角形内角和定理得出C+CBD+CDB=180,再由BCCD可知C=90,故CBD+CDB=90,再由ABDE可知ABD+BDE=180,故CBD+
15、CDB+ABD+BDE =270,再由ABC和CDE的平分线交于点F可得出CBF+CDF的度数,由四边形内角和定理即可得出结论【详解】解:连接BD,C+CBD+CDB=180,BCCD,C=90,CBD+CDB=90ABDE,ABD+BDE=180,CBD+CDB+ABD+BDE=90+180=270,即ABC+CDE=270ABC和CDE的平分线交于点F,CBF+CDF=270=135,BFD=360-90-135=135故答案为135【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质十二、填空题1295【分析】延长DE交AB于F,
16、根据两直线平行,同旁内角互补求出B,再根据两直线平行,同位角相等求出AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解解析:95【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出B,再根据两直线平行,同位角相等求出AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【详解】解:如图,延长DE交AB于F,ABCD,B180C18010575,BCDE,AFEB75,在AEF中,AEDA+AFE20+7595,故答案为:95【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键十三、填空题1359【分析
17、】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿解析:59【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿EF折叠,1=2,ADBC,FGE+GEC=180,FGE=62,GEC=180-62=118,1=2=GEC=59,ADBC,GFE=2,GFE=59故答案为59【点睛】本题主要考查翻折问题,平行线的性质,求解GEC的度数是解题的关键十四、填空题141【
18、分析】根据479可得,23,从而有75+8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果【详解】解析:1【分析】根据479可得,23,从而有75+8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果【详解】解:479,23,-3-2,75+8,25-3,5+的整数部分是7,5-的整数部分为2, a=5+-7=-2,b=5-2=3-,12019=1故答案为:1【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键十五、填空题15【分
19、析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形十六、填空题16(2,2)【分析】由格点确定点A、B、C的坐
20、标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020126164,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020126164,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标【详解】解:A点坐标为(2,2),B点坐标为(3,2),C点坐标为(3,1),AB3(2)5,BC2(1)3,从ABCDAB一圈的长度为2(ABBC)162020126164,当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2)故答案为:(2,2)【
21、点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈十七、解答题17(1) (2)3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式 ;(2)x2-4=5x2=9x=3或x=-3解析:(1) (2)3 【详解】试题分析:(1)先化简根式,再加减;(2)称项后,直接开平方即可;试题解析:(1)原式 ;(2)x2-4=5x2=9x=3或x=-3十八、解答题18(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x
22、+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=5,x=3或x=-2【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键十九、解答题19同位角相等,两直线平行;两直线平行,内错角相等;已知;BCD+CDE180;等量代换;同旁内角互补,两直线平行【分析】根据平行线的性质与判定填空即可【详解】证明:AFECD解析:
23、同位角相等,两直线平行;两直线平行,内错角相等;已知;BCD+CDE180;等量代换;同旁内角互补,两直线平行【分析】根据平行线的性质与判定填空即可【详解】证明:AFECDF(已知)EFCD (同位角相等,两直线平行)DEFCDE( 两直线平行,内错角相等)BCD+DEF180(已知)BCD+CDE180( 等量代换)BCDE( 同旁内角互补,两直线平行)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;BCD+CDE180;等量代换;同旁内角互补,两直线平行【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键二十、解答题20(1)坐标系见解析,B(0,1);
24、(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(2)分别作出A,B,C即可解决问题【详解】解:(1)平面直角坐标系如图所示:B(0,1)(2)ABC如图所示A(2,1),B(4,3),C(5,1)【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答
25、题21(1)2,;(2)2,;(3)【分析】(1)仿照题例,可直接求出的整数部分和小数部分;(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;(3)根据题例,先确定a、b,解析:(1)2,;(2)2,;(3)【分析】(1)仿照题例,可直接求出的整数部分和小数部分;(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;(3)根据题例,先确定a、b,再计算a-b即可【详解】解:(1),即的整数部分为2,的小数部分为; (2) ,即 ,的整数部分为1,的整数部分为2,小数部分为 (3),即,的整数部分为2,的整数部分为4,即a4,所以的小数部分为,即b=,
26、【点睛】本题考查了无理数的估算,二次根式的加减看懂题例并熟练运用是解决本题的关键二十二、解答题22(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解【详解】解:(1)正方体有6个面且每个面都相等,正
27、方体的一个面的面积=2 dm2正方形的棱长=dm;故答案为: dm ;(2)甲方案:设正方形的边长为xm,则x2 =121x =11正方形的周长为:4x=44m 乙方案: 设圆的半径rm为,则r2=121r =11圆的周长为:2= 22m 442222(2- 4 2 正方形的周长比圆的周长大 故从节省篱笆费用的角度考虑,选择乙方案建成圆形; (3)依题意可进行如图所示的平移,设小路的宽度为ym ,则 (11 y)2=12121 11 y =10 y= 取整数 y =答:根据此方案求出小路的宽度为;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;二十三、
28、解答题23(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(
29、2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系二十四、解答题24(1),证明见
30、解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,解析:(1),证明见解析,(2)或【分析】(1) 根据和镜像证出,即可判断直线与直线的位置关系,过点Q作QFCD,根据平行线的性质证即可;(2)过点Q作QFCD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可【详解】(1),证明:,;过点Q作QFCD,;(2)如图,当点P在N右侧时,过点Q作QFCD,同(1)得,如图,当点P在N左侧时,过点Q作QFCD,同(1)得,同理可得,;综上,的度数为或【点睛】本题考查了平行线的性质与判
31、定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系二十五、解答题25(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180解析:(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180,从而根据BED180(EBD+EDB)即可得到答案;(2)过点G作GPAB,根据ABCD,得到GPABCD,从而得到BGDBGP+PGDABG+CDG,然后根据EBD+EDB90,AB
32、D+BDC180,得到ABE+EDC90,即ABE+FDC90,再利用角平分线的定义求出2ABG+2CDG90即可得到答案;(3)过点F、G分别作FMAB、GMAB,从而得到ABGMFNCD,得到BGDBGM+DGM4+6,根据BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),即可求解.【详解】解:(1)证明:BE平分ABD,EBDABD,DE平分BDC,EDBBDC,EBD+EDB(ABD+BDC),ABCD,ABD+BDC180,EBD+EDB90,BED180(EBD+EDB)90(2)解:如图2,由(1)知:EBD+EDB90,又ABD+BDC180,ABE+
33、EDC90,即ABE+FDC90,BG平分ABE,DG平分CDF,ABE2ABG,CDF2CDG,2ABG+2CDG90,过点G作GPAB,ABCD,GPABCDABGBGP,PGDCDG,BGDBGP+PGDABG+CDG;(3)如图,过点F、G分别作FNAB、GMAB,ABCD,ABGMFNCD,3BFN,5DFN,4BGM,6DGM,BFDBFN+DFN3+5,BGDBGM+DGM4+6,BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),BFD+BGD3+5+4+6,3+5+(1803)+(1805),180+(3+5),180+BFD,整理得:2BGD+BFD360【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.