1、人教版中学七年级下册数学期末质量监测含答案一、选择题1的算术平方根是()ABCD2下列图形中,能将其中一个图形平移得到另一个图形的是 ( )ABCD3平面直角坐标系中,点(a2+1,2020)所在象限是()A第一象限B第二象限C第三象限D第四象限4下列命题中,是假命题的是( )A两条直线被第三条直线所截,同位角相等B同旁内角互补,两直线平行C在同一平面内,过一点有且只有一条直线与已知直线垂直D如果两条直线都与第三条直线平行,那么这两条直线也互相平行5如图,如果ABEF,EFCD,下列各式正确的是( )A1+23=90B12+3=90C1+2+3=90D2+31=1806下列说法错误的是( )A
2、的平方根是B的值是C的立方根是D的值是7如图,将OAB绕点O逆时针旋转55后得到OCD,此时,若,则的度数是( )A20B25C30D358如图,在平面直角坐标系中,长方形ABCD的各边分别平行于x轴或y轴,一物体从点A(-2,1)出发,沿矩形ABCD的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )A(2,1)B(2,1)C( 2,1)D( 2,1)九、填空题9若,则=_十、填空题10在平面直角坐标系中,若点和点关于轴对称,则_十一、填空题11如图,AE是ABC的角平分线,ADBC于点D,若BAC=130,C=30,则DAE的度数是_.十二、填空题12
3、如图,直线ab,直线c与直线a,b分别交于点D,E,射线DF直线c,则图中与1互余的角有 _个 十三、填空题13如图所示,一个四边形纸片ABCD,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,则=_度十四、填空题14对于这样的等式:若(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,则32a0+16a18a2+4a32a4+a5的值为_十五、填空题15已知点M在y轴上,纵坐标为4,点P(6,4),则OMP的面积是_十六、填空题16如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),沿长方形BCDE的边作环绕运动物体甲按逆时针方向以2个
4、单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是_十七、解答题17计算:(1);(2)十八、解答题18求下列各式中的:(1);(2);(3)十九、解答题19如图,1+2180,CD求证:ADBC证明:1+2180,2+AED180,1AED( ),AC ( ),DDAF( )CD,DAF (等量代换)ADBC( )二十、解答题20如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点A、B、C的对应点分别为(1
5、)在图中画出平移后的三角形; (2)写出点的坐标;(3)三角形ABC的面积为 二十一、解答题21已知的平方根是,的立方根是4,的算术平方根是m(1)求m的值;(2)如果,其中x是整数,且,求的值二十二、解答题22张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2他不知能否裁得出来,正在发愁李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?二十三、解答题23已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBC
6、EH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明二十四、解答题24已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,点E、F均落在直线MN上(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题请你根据小丽的思考,写出解决这一问题的过程(2)将三角形DEF沿着NM的方向平移,如图2,求证:;(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则_(用含的代数式表示)
7、二十五、解答题25问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、选择题1A解析:A【分析】根据算术平方根的意义求解即可【详解】解:16的算术平方根为4,故选:A【点睛】本题考查了算术平方根,理解算术平方根的意义是解
8、决问题的关键2A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到; C、图形由旋转变换得到,不符合平移的性质,不属于平移得到; D、图形的大小发生变化,不属于平移得到;故选:A【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向掌握平移的性质是解题的关键3
9、A【分析】根据点的横纵坐标的正负判断即可【详解】解:因为a2+11,所以点(a2+1,2020)所在象限是第一象限故选:A【点睛】本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键4A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A【点睛】本
10、题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键5D【分析】根据平行线的性质,即可得到3=COE,2+BOE=180,进而得出2+3-1=180【详解】EFCD3=COE31=COE1=BOEABEF2+BOE=180,即2+31=180故选:D【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补6B【分析】根据算术平方根与平方根、立方根的性质逐项判断即可得【详解】A、的平方根是,此项说法正确;B、的值是4,此项说法错误;C、的立方根是,此项说法正确;D、的值是,此项说法正确;故选:B【点睛】本题考查了算术平方根与平
11、方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键7D【分析】由旋转的性质得出AOC55,AC,根据平行线的性质得出BOCC35,则可得出答案【详解】解:将OAB绕点O逆时针旋转55后得到OCD,AOC55,AC,AOB20,BOCAOCAOB552035,CDOB,BOCC35,A35,故选:D【点睛】本题考查了旋转的性质,平行线的性质,求出BOC的度数是解题的关键8C【分析】用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置【详解】解:由图可得,长方形的周长为2(12+22)=12,2022=16解析:C【分析】用2022除以
12、12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置【详解】解:由图可得,长方形的周长为2(12+22)=12,2022=16812+6,经过2022秒后,该物体应运动了168圈,且继续运动6个单位,从A点开始按逆时针运动6秒到达了C点,经过2022秒后,物体所在位置的坐标为(2,-1)故选:C【点睛】本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=16812+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位九、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即
13、可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键十、填空题10【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故解析:【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-
14、3b,a+b)关于y轴对称,解得:,则故答案为:【点睛】本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键十一、填空题115【分析】根据直角三角形两锐角互余求出CAD,再根据角平分线定义求出CAE,然后根据DAE=CAE-CAD,代入数据进行计算即可得解【详解】ADBC,C=30,C解析:5【分析】根据直角三角形两锐角互余求出CAD,再根据角平分线定义求出CAE,然后根据DAE=CAE-CAD,代入数据进行计算即可得解【详解】ADBC,C=30,CAD=90-30=60,AE是ABC的角平分线,BAC=130,CAE=BAC=130=65,DAE
15、=CAE-CAD=65-60=5故答案为:5【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键十二、填空题124【分析】根据射线DF直线c,可得与1互余的角有2,3,根据ab,可得与1互余的角有4,5,可得图中与1互余的角有4个【详解】射线DF直线c1+2=90,1解析:4【分析】根据射线DF直线c,可得与1互余的角有2,3,根据ab,可得与1互余的角有4,5,可得图中与1互余的角有4个【详解】射线DF直线c1+2=90,1+3=90即与1互余的角有2,3又ab3=5,2=41互余的角有4,5与1互余的角有4个故答案为:4【
16、点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等十三、填空题13【分析】根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解【详解】解:,由翻折的性质得,故答案为:【点睛】解析:【分析】根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解【详解】解:,由翻折的性质得,故答案为:【点睛】本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质十四、填空题14-
17、1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+解析:-1【分析】根据多项式的乘法得出字母的值,进而代入解答即可【详解】解:(x+1)5x5+5x4+10x3+10x2+5x+1,(x+1)5a0x5+a1x4+a2x3+a3x2+a4x+a5,a01,a15,a210,a310,a45,a51,把a01,a15,a210,a310,a45,a51代入32a0+16a18a2+4a32a4+a5中,可得:32a0+16a18a2+4a32a4+a532+8080+40
18、10+11,故答案为:1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.十五、填空题15【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612解析:【分析】由M点的位置易求OM的长,在根据三角形的面积公式计算可求解【详解】解:M在y轴上,纵坐标为4,OM4,P(6,4),SOMPOM|xP|4612故答案为12【点睛】本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键十六、填空题16【分析】利用行程问题中的相遇问题,根据矩形
19、的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,解析:【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,甲走过的路程为,相遇坐标为,第二次相遇又用时间为(秒),甲又走过的路程为,相遇坐标为,第3次相遇时在点A处,则以后3的倍数次相遇都在点A处,第2021次相遇地点与第2次相遇地点的相同,第2021次相遇地点的坐标为故填:【点睛】此题主要考查了点的变化规律以及行程问题中的
20、相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点十七、解答题17(1)0 ;(2)2【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0解析:(1)0 ;(2)【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;试题解析:原式=2+2-4=0 原式= 十八、解答题18(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边
21、同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1解析:(1)0.3;(2);(3)或【分析】(1)先移项,再求立方根即可;(2)先两边同时除以49,再求平方根即可;(3)先开平方,可得两个一元一次方程,再解一元一次方程即可【详解】解:(1),;(2),;(3),或,解得:或【点睛】本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键十九、解答题19同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;C;同位角相等,两直线平行【分析】根据平行线的判定和性质定理即可得到结论【详解】证明:,
22、(同角的补角相等),解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;C;同位角相等,两直线平行【分析】根据平行线的判定和性质定理即可得到结论【详解】证明:,(同角的补角相等),(内错角相等,两直线平行),(两直线平行,内错角相等),(等量代换),(同位角相等,两直线平行)故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;同位角相等,两直线平行【点睛】本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键二十、解答题20(1)见解析;(2);(3)【分析】(1)根据
23、平移规律确定,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2);(3)【分析】(1)根据平移规律确定,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可【详解】(1)如图所示,三角形即为所求;(2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点的坐标为(-3,1);(3)三角形ABC的面积为:45-24-13-35=7【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计
24、算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键二十一、解答题21(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y解析:(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.【详解】(1)依题意得2a-1=9,11a+b-1=64,解得a=5,b=10,b-a=5,其算术平方根为,m=(2)x+y=10
25、+23,1210+13,x=12,y=10+-12=-2x-y=12-(-2)=【点睛】此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.二十二、解答题22不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于解析:不同意,理由见解析【详解】试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于20,所以用一块面积为400平方厘米的正
26、方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2试题解析:解:不同意李明的说法设长方形纸片的长为3x (x0)cm,则宽为2x cm,依题意得:3x2x=300,6x2=300,x2=50,x0,x=,长方形纸片的长为 cm,5049,7,21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,长方形纸片的长大于正方形纸片的边长答:李明不能用这块纸片裁出符合要求的长方形纸片点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)见解
27、析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键二十四、解答题24(1)见解析;(2)见解析;
28、(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到D解析:(1)见解析;(2)见解析;(3)见解析;【分析】(1)过点C作,得到,再根据,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据()结论得到DEF=ECA=,进而得到,根据三角形内角和即可求解【详解】解:(1)过点C作, , ,; (2)解:,又,;(3)如图三角形DEF即为所求作三角形 ,由(2)得,DEAC,DEF=ECA=,ACB=, ,A=180-=故答案为为:【点睛】本题考查了平行线的判
29、定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键二十五、解答题25(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决