资源描述
人教版中学七年级下册数学期末质量监测含答案
一、选择题
1.的算术平方根是()
A. B. C. D.
2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )
A. B. C. D.
3.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中,是假命题的是( )
A.两条直线被第三条直线所截,同位角相等
B.同旁内角互补,两直线平行
C.在同一平面内,过一点有且只有一条直线与已知直线垂直
D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
5.如图,如果AB∥EF,EF∥CD,下列各式正确的是( )
A.∠1+∠2−∠3=90° B.∠1−∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3−∠1=180°
6.下列说法错误的是( )
A.的平方根是 B.的值是
C.的立方根是 D.的值是
7.如图,将△OAB绕点O逆时针旋转55°后得到△OCD,此时,若,则的度数是( )
A.20° B.25° C.30° D.35°
8.如图,在平面直角坐标系中,长方形ABCD的各边分别平行于x轴或y轴,一物体从点A(-2,1)出发,沿矩形ABCD的边按逆时针作环绕运动,速度为1个单位/秒,则经过2022秒后,物体所在位置的坐标为( )
A.(﹣2,1) B.(﹣2,﹣1) C.( 2,﹣1) D.( 2,1)
九、填空题
9.若,则±=_________.
十、填空题
10.在平面直角坐标系中,若点和点关于轴对称,则____.
十一、填空题
11.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是__________.
十二、填空题
12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个.
十三、填空题
13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度.
十四、填空题
14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.
十五、填空题
15.已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是__.
十六、填空题
16.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是___.
十七、解答题
17.计算:(1);(2)
十八、解答题
18.求下列各式中的:
(1);
(2);
(3).
十九、解答题
19.如图,∠1+∠2=180°,∠C=∠D.求证:ADBC.
证明:∵∠1+∠2=180°,∠2+∠AED=180°,
∴∠1=∠AED( ),
∴AC ( ),
∴∠D=∠DAF( ).
∵∠C=∠D,
∴∠DAF= (等量代换).
∴ADBC( ).
二十、解答题
20.如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点A、B、C的对应点分别为.
(1)在图中画出平移后的三角形;
(2)写出点的坐标;
(3)三角形ABC的面积为 .
二十一、解答题
21.已知的平方根是,的立方根是4,的算术平方根是m.
(1)求m的值;
(2)如果,其中x是整数,且,求的值.
二十二、解答题
22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?
二十三、解答题
23.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.
(1)如图1,求证:GFEH;
(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.
二十四、解答题
24.已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,,,点E、F均落在直线MN上.
(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程.
(2)将三角形DEF沿着NM的方向平移,如图2,求证:;
(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则________.(用含的代数式表示)
二十五、解答题
25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据算术平方根的意义求解即可.
【详解】
解:16的算术平方根为4,
故选:A.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.
2.A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移
解析:A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移得到;
C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;
D、图形的大小发生变化,不属于平移得到;
故选:A.
【点睛】
本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.
3.A
【分析】
根据点的横纵坐标的正负判断即可.
【详解】
解:因为a2+1≥1,
所以点(a2+1,2020)所在象限是第一象限.
故选:A.
【点睛】
本题主要考查点所在的象限,掌握每个象限内点的横纵坐标的正负是关键.
4.A
【分析】
根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解.
【详解】
解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;
B. 同旁内角互补,两直线平行,真命题,不符合题意;
C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;
D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;
故选A.
【点睛】
本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键.
5.D
【分析】
根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.
【详解】
∵EF∥CD
∴∠3=∠COE
∴∠3−∠1=∠COE−∠1=∠BOE
∵AB∥EF
∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°
故选:D.
【点睛】
本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.
6.B
【分析】
根据算术平方根与平方根、立方根的性质逐项判断即可得.
【详解】
A、的平方根是,此项说法正确;
B、的值是4,此项说法错误;
C、的立方根是,此项说法正确;
D、的值是,此项说法正确;
故选:B.
【点睛】
本题考查了算术平方根与平方根、立方根的性质,熟练掌握算术平方根与平方根、立方根的性质是解题关键.
7.D
【分析】
由旋转的性质得出∠AOC=55°,∠A=∠C,根据平行线的性质得出∠BOC=∠C=35°,则可得出答案.
【详解】
解:∵将△OAB绕点O逆时针旋转55°后得到△OCD,
∴∠AOC=55°,∠A=∠C,
∵∠AOB=20°,
∴∠BOC=∠AOC−∠AOB=55°−20°=35°,
∵CD∥OB,
∴∠BOC=∠C=35°,
∴∠A=35°,
故选:D.
【点睛】
本题考查了旋转的性质,平行线的性质,求出∠BOC的度数是解题的关键.
8.C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=16
解析:C
【分析】
用2022除以12即可知道物体运动了几周,且继续运动几个单位,由此可判断2022秒后物体的位置.
【详解】
解:由图可得,长方形的周长为2×(1×2+2×2)=12,
∵2022=168×12+6,
∴经过2022秒后,该物体应运动了168圈,且继续运动6个单位,
∴从A点开始按逆时针运动6秒到达了C点,
∴经过2022秒后,物体所在位置的坐标为(2,-1).
故选:C.
【点睛】
本题主要考查了平面直角坐标系、点的坐标规律,解决本题的关键是得出2022=168×12+6,即经过2022秒后,该物体应运动了168圈,且继续运动6个单位.
九、填空题
9.±1.01
【分析】
根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.
【详解】
解:∵,
∴,
故答案为±1.01.
【点睛】
本题考查了算术平方根的移
解析:±1.01
【分析】
根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.
【详解】
解:∵,
∴,
故答案为±1.01.
【点睛】
本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.
十、填空题
10.【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故
解析:
【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故答案为:.
【点睛】
本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.
十一、填空题
11.5°
【分析】
根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.
【详解】
∵AD⊥BC,∠C=30°,
∴∠C
解析:5°
【分析】
根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE-∠CAD,代入数据进行计算即可得解.
【详解】
∵AD⊥BC,∠C=30°,
∴∠CAD=90°-30°=60°,
∵AE是△ABC的角平分线,∠BAC=130°,
∴∠CAE=∠BAC=×130°=65°,
∴∠DAE=∠CAE-∠CAD=65°-60°=5°.
故答案为:5°.
【点睛】
本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.
十二、填空题
12.4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1
解析:4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1+∠3=90°
即与∠1互余的角有∠2,∠3
又∵a∥b
∴∠3=∠5,∠2=∠4
∴∠1互余的角有∠4,∠5
∴与∠1互余的角有4个
故答案为:4
【点睛】
本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.
十三、填空题
13.【分析】
根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解.
【详解】
解:,,
,
由翻折的性质得,,
,
,
.
故答案为:.
【点睛】
解析:【分析】
根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解.
【详解】
解:,,
,
由翻折的性质得,,
,
,
.
故答案为:.
【点睛】
本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质.
十四、填空题
14.-1.
【分析】
根据多项式的乘法得出字母的值,进而代入解答即可.
【详解】
解:(x+1)5=x5+5x4+10x3+10x2+5x+1,
∵(x+1)5=a0x5+a1x4+a2x3+a3x2+
解析:-1.
【分析】
根据多项式的乘法得出字母的值,进而代入解答即可.
【详解】
解:(x+1)5=x5+5x4+10x3+10x2+5x+1,
∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,
∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,
把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,
可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,
故答案为:﹣1
【点睛】
本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.
十五、填空题
15.【分析】
由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.
【详解】
解:∵M在y轴上,纵坐标为4,
∴OM=4,
∵P(6,﹣4),
∴S△OMP=OM•|xP|
=×4×6
=12
解析:【分析】
由M点的位置易求OM的长,在根据三角形的面积公式计算可求解.
【详解】
解:∵M在y轴上,纵坐标为4,
∴OM=4,
∵P(6,﹣4),
∴S△OMP=OM•|xP|
=×4×6
=12.
故答案为12.
【点睛】
本题考查了三角形的面积,坐标与图形的性质,根据三角形的面积公式求解是解题的关键.
十六、填空题
16.【分析】
利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的周长为,
所以,第一次相遇的时间为秒,
此时,
解析:
【分析】
利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的周长为,
所以,第一次相遇的时间为秒,
此时,甲走过的路程为,
相遇坐标为,
第二次相遇又用时间为(秒),
甲又走过的路程为,
相遇坐标为,
∵,
∴第3次相遇时在点A处,则
以后3的倍数次相遇都在点A处,
∵,
∴第2021次相遇地点与第2次相遇地点的相同,
∴第2021次相遇地点的坐标为.
故填:.
【点睛】
此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.
十七、解答题
17.(1)0 ;(2)2
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
解析:(1)0 ;(2)
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
②原式==
十八、解答题
18.(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1
解析:(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1)∵,
∴,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴或,
解得:或.
【点睛】
本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键.
十九、解答题
19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,内错角相等),
,
(等量代换),
(同位角相等,两直线平行).
故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;;同位角相等,两直线平行.
【点睛】
本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.
二十、解答题
20.(1)见解析;(2);(3)
【分析】
(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;
(2)根据平移规律写出的坐标即可;
(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面
解析:(1)见解析;(2);(3)
【分析】
(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;
(2)根据平移规律写出的坐标即可;
(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.
【详解】
(1)如图所示,三角形即为所求;
(2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点的坐标为(-3,1);
(3)三角形ABC的面积为:4×5-×2×4-×1×3-×3×5=7.
【点睛】
本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键.
二十一、解答题
21.(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y
解析:(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.
【详解】
(1)依题意得2a-1=9,11a+b-1=64,
解得a=5,b=10,
∴b-a=5,其算术平方根为,
∴m=
(2)x+y=10+
∵2<<3,
∴12<10+<13,
∴x=12,y=10+-12=-2
∴x-y=12-(-2)=
【点睛】
此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.
二十二、解答题
22.不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于
解析:不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.
试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.
答:李明不能用这块纸片裁出符合要求的长方形纸片.
点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
二十三、解答题
23.(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详
解析:(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详解】
(1)证明:,
,
,
,
;
(2)解:,理由如下:
如图2,过点作,过点作,
,
,
,,
,
同理,,
平分,平分,
,,
,
由(1)知,,
,
,
,
,
.
【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
二十四、解答题
24.(1)见解析;(2)见解析;(3)见解析;.
【分析】
(1)过点C作,得到,再根据,,得到,进而得到,最后证明;
(2)先证明,再证明,得到,问题得证;
(3)根据题意得到,根据(2)结论得到∠D
解析:(1)见解析;(2)见解析;(3)见解析;.
【分析】
(1)过点C作,得到,再根据,,得到,进而得到,最后证明;
(2)先证明,再证明,得到,问题得证;
(3)根据题意得到,根据(2)结论得到∠DEF=∠ECA=,进而得到,根据三角形内角和即可求解.
【详解】
解:(1)过点C作,
,
,
,
,
,
,
,
,
;
(2)解:,,
又,
,
,
,
,
,
;
(3)如图三角形DEF即为所求作三角形.
∵,
∴,
由(2)得,DE∥AC,
∴∠DEF=∠ECA=,
∵,
∴∠ACB=,
∴ ,
∴∠A=180°-=.
故答案为为:.
【点睛】
本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.
二十五、解答题
25.(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
展开阅读全文