收藏 分销(赏)

人教版中学七7年级下册数学期末质量监测题(附答案).doc

上传人:快乐****生活 文档编号:1862643 上传时间:2024-05-10 格式:DOC 页数:25 大小:521.54KB
下载 相关 举报
人教版中学七7年级下册数学期末质量监测题(附答案).doc_第1页
第1页 / 共25页
人教版中学七7年级下册数学期末质量监测题(附答案).doc_第2页
第2页 / 共25页
人教版中学七7年级下册数学期末质量监测题(附答案).doc_第3页
第3页 / 共25页
人教版中学七7年级下册数学期末质量监测题(附答案).doc_第4页
第4页 / 共25页
人教版中学七7年级下册数学期末质量监测题(附答案).doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、人教版中学七7年级下册数学期末质量监测题(附答案)一、选择题1的平方根为()ABCD2下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3在平面直角坐标系中,点在( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A对顶角相等B两直线平行,同旁内角相等C过直线外一点有且只有一条直线与已知直线平行D同位角相等,两直线平行5如图,P为平行线之间的一点,若,CP平分ACD,则BAP的度数为( )ABCD6下列结论正确的是()A64的立方根是4B没有立方根C立方根等于本身的数是0D37在同一个平面内,为50,的两边分别与的两边平行,则的度数为( )A50B40或130

2、C50或130D408如图,在平面直角坐标系中,将边长为3,4,5的沿轴向右滚动到的位置,再到的位置依次进行下去,发现,那么点的坐标为( )ABCD九、填空题9若=0,则=_ .十、填空题10在平面直角坐标系中,若点和点关于轴对称,则_十一、填空题11如图,AD是ABC的角平分线,DEAB,垂足为E,若ABC的面积为15,DE3,AB6,则AC的长是 _ 十二、填空题12如图,AD/BC,则_度十三、填空题13如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=30,则EFC的度数为_十四、填空题14观察下列等式:1,2,3,4,根据你发现的规律,则第20个

3、等式为_十五、填空题15在平面直角坐标系中,有点A(a2,a),过点A作ABx轴,交x轴于点B,且AB2,则点A的坐标是_十六、填空题16在平面直角坐标系中,已知点,且,下列结论:轴,将点A先向右平移5个单位,再向下平移个单位可得到点;若点在直线上,则点的横坐标为3;三角形的面积为,其中正确的结论是_(填序号)十七、解答题17(1)计算:(2)解方程:十八、解答题18求下列各式中x的值:(1)(x+1)3270(2)(2x1)2250十九、解答题19如图所示,已知1+2180,B3,请你判断DE和BC平行吗?说明理由(请根据下面的解答过程,在横线上补全过程和理由)解:DEBC理由如下:1+41

4、80(平角的定义),1+2180( ),24( ) ( )3 ( )3B( ), ( )DEBC( )二十、解答题20如图,已知在平面直角坐标系中的位置如图所示(1)写出三个顶点的坐标;(2)求出的面积;(3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的二十一、解答题21阅读下面的文字,解答问题,例如:,即,的整数部分是2,小数部分是;(1)试解答:的整数部分是_,小数部分是_(2)已知小数部分是,小数部分是,且,请求出满足条件的的值二十二、解答题22小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍她不知能否裁得出来,正在发愁小

5、明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?二十三、解答题23如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数二十四、解答题24如图,ABAK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,MAB+KCF=90(1)求证:EFMN;(2)如图2,NAB与ECK的角平分线交于点G,求

6、G的度数;(3)如图3,在MAB内作射线AQ,使MAQ=2QAB,以点C为端点作射线CP,交直线AQ于点T,当CTA=60时,直接写出FCP与ACP的关系式二十五、解答题25如图1,已知ABCD,BE平分ABD,DE平分BDC(1)求证:BED90;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,EDF,ABF的角平分线与CDF的角平分线DG交于点G,试用含的式子表示BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,EBM的角平分线与FDN的角平分线交于点G,探究BGD与BFD之间的数量关系,请直接写出结论:【参考答案】一、选择题1B解析:B【分析】根据平方

7、根的定义,如果一个数的平方等于a,则叫做这个数的平方根.【详解】解:因为22=4,(-2)2=4,所以4的平方根是,故选B.【点睛】本题主要考查平方根的定义,解决本题的关键是要熟练掌握平方根的定义.2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D

8、选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3B【分析】根据各象限内点的坐标特征解答即可【详解】解:点A(-3,2)在第二象限,故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】

9、真命题就是正确的命题,条件和结果相矛盾的命题是假命题【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键5A【分析】过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案【详解】解:如图,过P点作PMAB交AC于点MCP平分ACD,ACD68,4ACD34ABCD,PMAB,PMCD,3434,APCP,APC9

10、0,2APC356,PMAB,1256,即:BAP的度数为56,故选:A【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键6D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、的立方根为,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和1,原说法错误,故这个选项不符合题意;D、3,原说法正确,故这个选项符合题意;故选:D【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根7C【分析】如图,分两种情况进行讨论求解即

11、可【详解】解:如图所示,ACBF,ADBE,A=FOD,B=FOD,B=A=50;如图所示,ACBF,ADBE,A=BOD,B+BOD=180,B+A=180,B=130,故选C【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解8D【分析】根据旋转的过程寻找规律即可求解【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(解析:D【分析】根据旋转的过程寻找规律即可求解【详解】解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继

12、续旋转得A3(24,3),A4(27,0);发现规律:A9(512,3),A10(512+3,0),即(63,0)故选:D【点睛】本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识九、填空题99【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n2=0,解得:m=3,n=2,则=9.考点:非负数的性质.十、填空题10【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2

13、a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故解析:【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故答案为:【点睛】本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键十一、填空题114【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是AB解析:4【分析】过点D作DFAC,则由AD是ABC的角平分线,DF

14、AC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是ABC的角平分线,DFAC, DEAB,DE=DF,又三角形的面积的,即,解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.十二、填空题1252【分析】根据AD/BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得【详解】,故答案为:52【点睛】本题考查了平行线的性质,三角形内角和定理,解析:52【分析】根据AD/BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得【详解】,故答案为:52【点睛】本题考查了平行线的性质

15、,三角形内角和定理,角度的计算,掌握以上知识是解题的关键十三、填空题13120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而解析:120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而AEB的度数可在RtABE中求得,由此可求出BEF的度数,即可得解【详解】解:RtABE中,ABE=30,AEB=60;由折叠的性质知:BEF=DEF;而BED=180-AEB=120,BE

16、F=60;由折叠的性质知:EBC=D=BCF=C=90,BECF,EFC=180-BEF=120故答案为:120【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题1420【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案【详解】观察已知等式,等式左边的第一个数的规

17、律为,第二个数的规律为:分子为,分母为等式右边的规律为:分子为,分母为归纳类推得:第n个等式为(n为正整数)当时,这个等式为,即故答案为:【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键十五、填空题15(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),A解析:(0,2)、(4,2)【分析】由点A(a-2,a),及ABx轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案【详解】解:点A(a2,a),ABx轴,

18、AB2,|a|2,a2,当a2时,a20;当a2时,a24点A的坐标是(0,2)、(4,2)故答案为:(0,2)、(4,2)【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键十六、填空题16【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断解析:【分析】两点纵坐标相同,得到 AB /x轴,即可判断;根据平移规律求得平移后的点的坐标,即可判断;根据两点的坐标特征可知直线BCx轴,即可判断;求得三角形的面积,即可判断【详解】解:A

19、(-2,4),B(3,4),它们的纵坐标相同,AB /x轴,故正确;将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m),故错误;B(3,4),C(3,m),它们的横坐标相同,BC x轴,点 D 在直线BC上,点 D的横坐标为 3,故正确;点A(-2,4),B(3, 4),C(3,m),且m4,AB =5,C 点到 AB 的距离为(4-m),三角形 ABC 的面积为,故正确;故答案为:【点睛】本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键十七、解答题17(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加

20、减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可【详解】解:(1)=解析:(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减; (2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可【详解】解:(1)=;(2),去分母,可得:3(x+1)-6=2(2-3x),去括号,可得:3x+3-6=4-6x,移项,可得:3x+6x=4-3+6,合并同类项,可得:9x=7,系数化为1,可得:x=【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项

21、、系数化为1十八、解答题18(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=5,x=3或x=-2【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键十九、解答题19已知

22、;同角的补角相等;AB;EF;内错角相等,两直线平行;ADE;两直线平行,内错角相等;已知;B;ADE;等量代换;同位角相等,两直线平行【分析】求出24,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;ADE;两直线平行,内错角相等;已知;B;ADE;等量代换;同位角相等,两直线平行【分析】求出24,根据平行线的判定得出ABEF,根据平行线的性质得出3ADE,求出BADE,再根据平行线的判定推出即可【详解】解:DEBC,理由如下:1+4180(平角定义),1+2180(已知),24(同角的补角相等),ABEF(内错角相等,两直线平行),3ADE(两直线平

23、行,内错角相等),3B(已知),BADE(等量代换),DEBC(同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键二十、解答题20(1);(2);(3)图见解析【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得【详解】解:解析:(1);(2);(3)图见解析【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得【详解】解:(1)由点在平面直角坐标系中的位置:;(

24、2)的面积为;(3)如图所示,即为所求【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键二十一、解答题21(1)4,;(2)【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值【详解】(1),即,的整数部分是4,小数部分解析:(1)4,;(2)【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值【详解】(1),即,的整数部分是4,小数部分是,故答案是:4;(2),的整数部分是4,小数部分是,的整数部分是13,小数部分是,所以解得:【点睛】本题考查

25、了估算无理数的大小,无理数的整数部分及小数部分的确定方法:设无理数为m,m的整数部分a为不大于m的最大整数,小数部分b为数m减去其整数部分,即b=m-a;理解概念是解题的关键二十二、解答题22不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长

26、方形面积,解得(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键二十三、解答题23(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻

27、补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB1806

28、0GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键二十四、解答题24(1)见解析;(2)CGA=45;(3)FCP=2ACP或FCP+2ACP=180【分析】(1)有垂直定义可得MAB+KCN=90,然后根据同角的余角相等可得KAN=K解析:(1)见

29、解析;(2)CGA=45;(3)FCP=2ACP或FCP+2ACP=180【分析】(1)有垂直定义可得MAB+KCN=90,然后根据同角的余角相等可得KAN=KCF,从而判断两直线平行;(2)设KAN=KCF=,过点G作GHEF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解【详解】解:(1)ABAKBAC=90MAB+KAN=90MAB+KCF=90KAN=KCFEFMN (2)设KAN=KCF=则BAN=BAC+KAN=90KCB=180KCF=180 AG平分NAB,CG平分ECKGAN=BAN=45,KCG=

30、KCB=90FCG=KCG+KCF=90过点G作GHEFHGC=FCG=90又MNEFMNGHHGA=GAN=45CGA=HGCHGA=(90)(45)=45 (3)当CP交射线AQ于点T又由(1)可得:EFMN ,即FCP+2ACP=180当CP交射线AQ的反向延长线于点T,延长BA交CP于点G,由EFMN得又,由可得综上,FCP=2ACP或FCP+2ACP=180【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键二十五、解答题25(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC)

31、,根据平行线的性质ABD+BDC180解析:(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180,从而根据BED180(EBD+EDB)即可得到答案;(2)过点G作GPAB,根据ABCD,得到GPABCD,从而得到BGDBGP+PGDABG+CDG,然后根据EBD+EDB90,ABD+BDC180,得到ABE+EDC90,即ABE+FDC90,再利用角平分线的定义求出2ABG+2CDG90即可得到答案;(3)过点F、G分别作FMAB、GMAB,从而得到ABGMFNCD,得到BGDBGM

32、+DGM4+6,根据BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),即可求解.【详解】解:(1)证明:BE平分ABD,EBDABD,DE平分BDC,EDBBDC,EBD+EDB(ABD+BDC),ABCD,ABD+BDC180,EBD+EDB90,BED180(EBD+EDB)90(2)解:如图2,由(1)知:EBD+EDB90,又ABD+BDC180,ABE+EDC90,即ABE+FDC90,BG平分ABE,DG平分CDF,ABE2ABG,CDF2CDG,2ABG+2CDG90,过点G作GPAB,ABCD,GPABCDABGBGP,PGDCDG,BGDBGP+PGDABG+CDG;(3)如图,过点F、G分别作FNAB、GMAB,ABCD,ABGMFNCD,3BFN,5DFN,4BGM,6DGM,BFDBFN+DFN3+5,BGDBGM+DGM4+6,BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),BFD+BGD3+5+4+6,3+5+(1803)+(1805),180+(3+5),180+BFD,整理得:2BGD+BFD360【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服