资源描述
人教版中学七7年级下册数学期末质量监测题(附答案)
一、选择题
1.的平方根为()
A. B. C. D.
2.下列四幅图案中,通过平移能得到图案E的是( )
A.A B.B C.C D.D
3.在平面直角坐标系中,点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是( )
A.对顶角相等
B.两直线平行,同旁内角相等
C.过直线外一点有且只有一条直线与已知直线平行
D.同位角相等,两直线平行
5.如图,,P为平行线之间的一点,若,CP平分∠ACD,,则∠BAP的度数为( )
A. B. C. D.
6.下列结论正确的是( )
A.64的立方根是±4
B.﹣没有立方根
C.立方根等于本身的数是0
D.=﹣3
7.在同一个平面内,为50°,的两边分别与的两边平行,则的度数为( ).
A.50° B.40°或130° C.50°或130° D.40°
8.如图,在平面直角坐标系中,将边长为3,4,5的沿轴向右滚动到的位置,再到的位置…依次进行下去,发现,,…那么点的坐标为( )
A. B. C. D.
九、填空题
9.若=0,则=________ .
十、填空题
10.在平面直角坐标系中,若点和点关于轴对称,则____.
十一、填空题
11.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为15,DE=3,AB=6,则AC的长是 _______
十二、填空题
12.如图,AD//BC,,则____度.
十三、填空题
13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________.
十四、填空题
14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____.
十五、填空题
15.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB=2,则点A的坐标是___.
十六、填空题
16.在平面直角坐标系中,已知点,,,且,下列结论:①轴,②将点A先向右平移5个单位,再向下平移个单位可得到点;③若点在直线上,则点的横坐标为3;④三角形的面积为,其中正确的结论是___________(填序号).
十七、解答题
17.(1)计算:
(2)解方程:
十八、解答题
18.求下列各式中x的值:
(1)(x+1)3﹣27=0
(2)(2x﹣1)2﹣25=0
十九、解答题
19.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)
解:DE∥BC.理由如下:
∵∠1+∠4=180°(平角的定义),∠1+∠2=180°( ),
∴∠2=∠4( ).
∴ ∥ ( ).
∴∠3= ( ).
∵∠3=∠B( ),
∴ = ( ).
∴DE∥BC( ).
二十、解答题
20.如图,已知在平面直角坐标系中的位置如图所示.
(1)写出三个顶点的坐标;
(2)求出的面积;
(3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的.
二十一、解答题
21.阅读下面的文字,解答问题,例如:,即,
的整数部分是2,小数部分是;
(1)试解答:的整数部分是____________,小数部分是________
(2)已知小数部分是,小数部分是,且,请求出满足条件的的值.
二十二、解答题
22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?
二十三、解答题
23.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.
(1)求证:∠CAB=∠MCA+∠PBA;
(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;
(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.
二十四、解答题
24.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°.
(1)求证:EF∥MN;
(2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数;
(3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式.
二十五、解答题
25.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.
(1)求证:∠BED=90°;
(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;
(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: .
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据平方根的定义,如果一个数的平方等于a,则叫做这个数的平方根.
【详解】
解:因为22=4,(-2)2=4,
所以4的平方根是,
故选B.
【点睛】
本题主要考查平方根的定义,解决本题的关键是要熟练掌握平方根的定义.
2.B
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.
【详解】
根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件
解析:B
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.
【详解】
根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;
A,D选项改变了方向,故错误,
C选项中,三角形和四边形位置不对,故C错误
故选:B
【点睛】
在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.
3.B
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点A(-3,2)在第二象限,
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
真命题就是正确的命题,条件和结果相矛盾的命题是假命题.
【详解】
解:A. 对顶角相等是真命题,故A不符合题意;
B. 两直线平行,同旁内角互补,故B是假命题,符合题意;
C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;
D. 同位角相等,两直线平行,是真命题,故D不符合题意,
故选:B.
【点睛】
本题考查真假命题,是基础考点,掌握相关知识是解题关键.
5.A
【分析】
过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.
【详解】
解:如图,过P点作PMAB交AC于点M.
∵CP平分∠ACD,∠ACD=68°,
∴∠4=∠ACD=34°.
∵ABCD,PMAB,
∴PMCD,
∴∠3=∠4=34°,
∵AP⊥CP,
∴∠APC=90°,
∴∠2=∠APC-∠3=56°,
∵PMAB,
∴∠1=∠2=56°,
即:∠BAP的度数为56°,
故选:A.
【点睛】
此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.
6.D
【分析】
利用立方根的定义及求法分别判断后即可确定正确的选项.
【详解】
解:A、64的立方根是4,原说法错误,故这个选项不符合题意;
B、﹣的立方根为﹣,原说法错误,故这个选项不符合题意;
C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;
D、=﹣3,原说法正确,故这个选项符合题意;
故选:D.
【点睛】
本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.
7.C
【分析】
如图,分两种情况进行讨论求解即可.
【详解】
解:①如图所示,AC∥BF,AD∥BE,
∴∠A=∠FOD,∠B=∠FOD,
∴∠B=∠A=50°;
②如图所示,AC∥BF,AD∥BE,
∴∠A=∠BOD,∠B+∠BOD=180°,
∴∠B+∠A=180°,
∴∠B=130°,
故选C.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
8.D
【分析】
根据旋转的过程寻找规律即可求解.
【详解】
解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,
所以点A1(12,3),A2(15,0);
继续旋转得A3(24,3),A4(
解析:D
【分析】
根据旋转的过程寻找规律即可求解.
【详解】
解:根据旋转可知:OA+AB1+B1C2=3+5+4=12,
所以点A1(12,3),A2(15,0);
继续旋转得A3(24,3),A4(27,0);
…
发现规律:A9(5×12,3),
A10(5×12+3,0),
即(63,0).
故选:D.
【点睛】
本题考查了规律型:点的坐标,解决本题的关键是灵活运用旋转的知识.
九、填空题
9.9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
解析:9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
十、填空题
10.【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故
解析:
【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故答案为:.
【点睛】
本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.
十一、填空题
11.4
【分析】
过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长.
【详解】
过点D作DF⊥AC
∵AD是△AB
解析:4
【分析】
过点D作DF⊥AC,则由AD是△ABC的角平分线,DF⊥AC, DE⊥AB,可以得到DE=DF,可由三角形的面积的,,进而解得AC的长.
【详解】
过点D作DF⊥AC
∵AD是△ABC的角平分线,DF⊥AC, DE⊥AB,
∴DE=DF,
又三角形的面积的,
即,
解得AC=4
【点睛】
主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.
十二、填空题
12.52
【分析】
根据AD//BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得.
【详解】
,
,
,
,
,
.
故答案为:52.
【点睛】
本题考查了平行线的性质,三角形内角和定理,
解析:52
【分析】
根据AD//BC,可知,根据三角形内角和定理以及求得,结合题意,即可求得.
【详解】
,
,
,
,
,
.
故答案为:52.
【点睛】
本题考查了平行线的性质,三角形内角和定理,角度的计算,掌握以上知识是解题的关键.
十三、填空题
13.120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而
解析:120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.
【详解】
解:Rt△ABE中,∠ABE=30°,
∴∠AEB=60°;
由折叠的性质知:∠BEF=∠DEF;
而∠BED=180°-∠AEB=120°,
∴∠BEF=60°;
由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°,
∴BE∥C′F,
∴∠EFC′=180°-∠BEF=120°.
故答案为:120.
【点睛】
本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
十四、填空题
14.20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的
解析:20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的规律为:分子为,分母为
归纳类推得:第n个等式为(n为正整数)
当时,这个等式为,即
故答案为:.
【点睛】
本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.
十五、填空题
15.(0,2)、(﹣4,﹣2).
【分析】
由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.
【详解】
解:∵点A(a﹣2,a),A
解析:(0,2)、(﹣4,﹣2).
【分析】
由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.
【详解】
解:∵点A(a﹣2,a),AB⊥x轴,AB=2,
∴|a|=2,
∴a=±2,
∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4.
∴点A的坐标是(0,2)、(﹣4,﹣2).
故答案为:(0,2)、(﹣4,﹣2).
【点睛】
本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.
十六、填空题
16.①③④
【分析】
①两点纵坐标相同,得到 AB //x轴,即可判断;
②根据平移规律求得平移后的点的坐标,即可判断;
③根据两点的坐标特征可知直线BCx轴,即可判断;
④求得三角形的面积,即可判断.
解析:①③④
【分析】
①两点纵坐标相同,得到 AB //x轴,即可判断;
②根据平移规律求得平移后的点的坐标,即可判断;
③根据两点的坐标特征可知直线BCx轴,即可判断;
④求得三角形的面积,即可判断.
【详解】
解:A(-2,4),B(3,4),它们的纵坐标相同,
AB //x轴,
故①正确;
将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m),
故②错误;
B(3,4),C(3,m),它们的横坐标相同,
BC x轴,
点 D 在直线BC上,
点 D的横坐标为 3,
故③正确;
点A(-2,4),B(3, 4),C(3,m),且m<4,
AB =5,C 点到 AB 的距离为(4-m),
三角形 ABC 的面积为,
故④正确;
故答案为:①③④.
【点睛】
本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键.
十七、解答题
17.(1);(2)x=
【分析】
(1)先算乘方、绝对值和开方,再算乘法,最后算加减;
(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.
【详解】
解:(1)
=
=
解析:(1);(2)x=
【分析】
(1)先算乘方、绝对值和开方,再算乘法,最后算加减;
(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.
【详解】
解:(1)
=
=
=;
(2),
去分母,可得:3(x+1)-6=2(2-3x),
去括号,可得:3x+3-6=4-6x,
移项,可得:3x+6x=4-3+6,
合并同类项,可得:9x=7,
系数化为1,可得:x=.
【点睛】
此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
十八、解答题
18.(1)x=2;(2)x=3或x=-2.
【分析】
(1)根据立方根的定义进行求解即可;
(2)根据平方根的定义进行求解,即可得出答案.
【详解】
解:(1)(x+1)3-27=0,
(x+1)3=2
解析:(1)x=2;(2)x=3或x=-2.
【分析】
(1)根据立方根的定义进行求解即可;
(2)根据平方根的定义进行求解,即可得出答案.
【详解】
解:(1)(x+1)3-27=0,
(x+1)3=27,
x+1=3,
x=2;
(2)(2x-1)2-25=0,
(2x-1)2=25,
2x-1=±5,
x=3或x=-2.
【点睛】
本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.
十九、解答题
19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB
解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.
【详解】
解:DE∥BC,理由如下:
∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),
∴∠2=∠4(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键.
二十、解答题
20.(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:
解析:(1);(2);(3)图见解析.
【分析】
(1)根据点在平面直角坐标系中的位置即可得;
(2)利用一个长方形的面积减去三个直角三角形的面积即可得;
(3)根据平移作图的方法即可得.
【详解】
解:(1)由点在平面直角坐标系中的位置:;
(2)的面积为;
(3)如图所示,即为所求.
【点睛】
本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.
二十一、解答题
21.(1)4,;(2)
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵,即,
∴的整数部分是4,小数部分
解析:(1)4,;(2)
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵,即,
∴的整数部分是4,小数部分是,
故答案是:4;;
(2)∵,
∴,
∴,
∴的整数部分是4,小数部分是,
∵,
∴,
∴的整数部分是13,小数部分是,
∵
所以
解得:.
【点睛】
本题考查了估算无理数的大小,无理数的整数部分及小数部分的确定方法:设无理数为m,m的整数部分a为不大于m的最大整数,小数部分b为数m减去其整数部分,即b=m-a;理解概念是解题的关键.
二十二、解答题
22.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,故边长为
设长方形宽为,则长为
长方形面积
∴,
解得(负值舍去)
长为
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二十三、解答题
23.(1)证明见解析;(2)证明见解析;(3)120°.
【分析】
(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)
解析:(1)证明见解析;(2)证明见解析;(3)120°.
【分析】
(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;
(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.
【详解】
解:(1)证明:如图1,过点A作AD∥MN,
∵MN∥PQ,AD∥MN,
∴AD∥MN∥PQ,
∴∠MCA=∠DAC,∠PBA=∠DAB,
∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,
即:∠CAB=∠MCA+∠PBA;
(2)如图2,∵CD∥AB,
∴∠CAB+∠ACD=180°,
∵∠ECM+∠ECN=180°,
∵∠ECN=∠CAB
∴∠ECM=∠ACD,
即∠MCA+∠ACE=∠DCE+∠ACE,
∴∠MCA=∠DCE;
(3)∵AF∥CG,
∴∠GCA+∠FAC=180°,
∵∠CAB=60°
即∠GCA+∠CAB+∠FAB=180°,
∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,
由(1)可知,∠CAB=∠MCA+∠ABP,
∵BF平分∠ABP,CG平分∠ACN,
∴∠ACN=2∠GCA,∠ABP=2∠ABF,
又∵∠MCA=180°﹣∠ACN,
∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,
∴∠GCA﹣∠ABF=60°,
∵∠AFB+∠ABF+∠FAB=180°,
∴∠AFB=180°﹣∠FAB﹣∠FBA
=180°﹣(120°﹣∠GCA)﹣∠ABF
=180°﹣120°+∠GCA﹣∠ABF
=120°.
【点睛】
本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.
二十四、解答题
24.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K
解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;
(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;
(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.
【详解】
解:(1)∵AB⊥AK
∴∠BAC=90°
∴∠MAB+∠KAN=90°
∵∠MAB+∠KCF=90°
∴∠KAN=∠KCF
∴EF∥MN
(2)设∠KAN=∠KCF=α
则∠BAN=∠BAC+∠KAN=90°+α
∠KCB=180°-∠KCF=180°-α
∵AG平分∠NAB,CG平分∠ECK
∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α
∴∠FCG=∠KCG+∠KCF=90°+α
过点G作GH∥EF
∴∠HGC=∠FCG=90°+α
又∵MN∥EF
∴MN∥GH
∴∠HGA=∠GAN=45°+α
∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45°
(3)①当CP交射线AQ于点T
∵
∴
又∵
∴
由(1)可得:EF∥MN
∴
∵
∴
∵,
∴
∴
即∠FCP+2∠ACP=180°
②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G
,由EF∥MN得
∴
又∵,,
∴
∵,
∴
∴
∴
由①可得
∴
∴
综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【点睛】
本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.
二十五、解答题
25.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°
解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;
(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,
得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;
(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.
【详解】
解:(1)证明:∵BE平分∠ABD,
∴∠EBD=∠ABD,
∵DE平分∠BDC,
∴∠EDB=∠BDC,
∴∠EBD+∠EDB=(∠ABD+∠BDC),
∵AB∥CD,
∴∠ABD+∠BDC=180°,
∴∠EBD+∠EDB=90°,
∴∠BED=180°﹣(∠EBD+∠EDB)=90°.
(2)解:如图2,
由(1)知:∠EBD+∠EDB=90°,
又∵∠ABD+∠BDC=180°,
∴∠ABE+∠EDC=90°,
即∠ABE+α+∠FDC=90°,
∵BG平分∠ABE,DG平分∠CDF,
∴∠ABE=2∠ABG,∠CDF=2∠CDG,
∴2∠ABG+2∠CDG=90°﹣α,
过点G作GP∥AB,
∵AB∥CD,
∴GP∥AB∥CD
∴∠ABG=∠BGP,∠PGD=∠CDG,
∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;
(3)如图,过点F、G分别作FN∥AB、GM∥AB,
∵AB∥CD,
∴AB∥GM∥FN∥CD,
∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,
∴∠BFD=∠BFN+∠DFN=∠3+∠5,
∠BGD=∠BGM+∠DGM=∠4+∠6,
∵BG平分∠FBP,DG平分∠FDQ,
∴∠4=∠FBP=(180°﹣∠3),
∠6=∠FDQ=(180°﹣∠5),
∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,
=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),
=180°+(∠3+∠5),
=180°+∠BFD,
整理得:2∠BGD+∠BFD=360°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.
展开阅读全文