1、人教版七年级下册数学期末学业水平试卷含解析一、选择题1化简的结果为()A16B4C2D2下列车标,可看作图案的某一部分经过平移所形成的是( )A BCD3在平面直角坐标系中,点(3,2)在()A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是()A同位角相等,两直线平行B三角形的一个外角等于与它不相邻的两个内角的和C平行于同一条直线的两条直线平行D平面内,到一个角两边距离相等的点在这个角的平分线上5如图,平分,点在的延长线上,连接,下列结论:;平分;其中正确的个数为( )A1个B2个C3个D4个6若,则( )A632.9B293.8C2938D63297如图,把一块含有45角的直角
2、三角板的两个顶点放在直尺的对边上如果115,那么2的度数是()A15B60C30D758在平面直角坐标系中,对于点P(x,y),我们把点P(1y,x1)叫做点P的友好点已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,这样依次得到点A1、A2、A3、A4,若点A1的坐标为(3,2),则点A2020的坐标为()A(3,2)B(1,2)C(1,2)D(3,2)九、填空题9如果一个正方形的面积为3,则这个正方形的边长是 _十、填空题10平面直角坐标系中,点关于轴的对称点是_十一、填空题11如图,AD是ABC的角平分线,DFAB,垂足为F,DE=DG,ADG和AED的面积分别为50
3、和38,则EDF的面积为_十二、填空题12将一条长方形纸带按如图方式折叠,若,则的度数为_十三、填空题13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_十四、填空题14任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_十五、填空题15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足
4、的数量关系式为_十六、填空题16在平面直角坐标系中,已知点A(4,0),B(0,3),对AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4),那么第(2013)个三角形的直角顶点坐标是_十七、解答题17计算:(1);(2)十八、解答题18求下列各式中x的值:(1)(x+1)3270(2)(2x1)2250十九、解答题19如图,试说明证明:(已知)_=_(垂直定义)_/_(_)(_)_/_(_)_(平行于同一直线的两条直线互相平行)(_)二十、解答题20如图,在平面直角坐标系中,的顶点都在格点上,点(1)写出点,的坐标;(2)求的面积二十一、解答题21实数在数轴上的对应点的
5、位置如图所示,(1)求的值;(2)已知的小数部分是,的小数部分是,求的平方根二十二、解答题22观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?边长是多少?(2)估计边长的值在哪两个整数之间二十三、解答题23综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系; (问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,当点在、(不与、重合)两点之间运动时,设,则,之间有何数量关系?请说明理由若点不在线段上运动时(点与点、
6、三点都不重合),请你画出满足条件的所有图形并直接写出,之间的数量关系二十四、解答题24已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为AC上一点,请写出与之间的等量关系,并说明理由(3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论二十五、解答题25(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为1,反射光线 OB 与水平镜面夹角为2,则1=
7、2 .(现象解释)如图 2,有两块平面镜 OM,ON,且 OMON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 ABCD.(尝试探究)如图 3,有两块平面镜 OM,ON,且MON =55 ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求BEC 的大小.(深入思考)如图 4,有两块平面镜 OM,ON,且MON = ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,BED= , 与 之间满足的等量关系是 .(直接写出结果)【参考答案】一、选择题1C解析:C【分析】根据算术平方根的的性质即可化简【详
8、解】=2故选C【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质2D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义3B【分析】根据
9、各象限内点的坐标特征解答即可【详解】解:点在第二象限,故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限4D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项【详解】解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题
10、,符合题意;故选:D【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大5D【分析】结合平行线性质和平分线判断出正确,再结合平行线和平分线根据等量代换判断出正确即可【详解】解:ABCD,1=2,AC平分BAD,2=3,1=3,B=CDA,1=4,3=4,BCAD,正确;CA平分BCD,正确;B=2CED,CDA=2CED,CDA=DCE+CED,ECD=CED,正确;BCAD,BCE+AEC= 180,1+4+DCE+CED= 180,1+DCE = 90,ACE= 90,ACEC,正确故其中正确的有,4个,故选:D【点睛】此题考查平
11、行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键6B【分析】把,再利用立方根的性质化简即可得到答案.【详解】解: , 故选:【点睛】本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.7C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案【详解】解:如图所示:由题意可得:1315,则245330故选:C【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45的利用8D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为
12、(3,2),根据友好点的定义可得:A1(3,2),A解析:D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解【详解】解:点A1的坐标为(3,2),根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),以此类推,每4个点为一个循环,20204=505,点A2020的坐标与A4的坐标相同,为(3,-2)故选D.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律是解题的关键九、填空题9【分析】设这个正方形的边长为x(x0),由题意得x23,根据算术平方根的定义解决此
13、题【详解】解:设这个正方形的边长为x(x0)由题意得:x23x故答案为:【点睛解析:【分析】设这个正方形的边长为x(x0),由题意得x23,根据算术平方根的定义解决此题【详解】解:设这个正方形的边长为x(x0)由题意得:x23x故答案为:【点睛】本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键十、填空题10【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特解析:【分析】根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成
14、解答.【详解】解:点关于轴的对称点的坐标是(3,2).【点睛】本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数;十一、填空题116【详解】如图,过点D作DHAC于点H,又AD是ABC的角平分线,DFAB,垂足为F,DF=DH,AFD=ADH=DHG=90,又AD=AD,DE=DG,ADF解析:6【详解】如图,过点D作DHAC于点H,又AD是ABC的角平分线,DFAB,垂足为F,DF=DH,AFD=ADH=DHG=90,又AD=AD,DE=DG,ADFADH,DEFDGH,设SD
15、EF=,则SAED+=SADG-,即38+=50-,解得:=6.EDF的面积为6.十二、填空题1236【分析】根据平行线的性质、折叠的性质即可解决【详解】ABCD,如图GEC=1=108由折叠的性质可得:2=FED2+FED+GEC=1802=解析:36【分析】根据平行线的性质、折叠的性质即可解决【详解】ABCD,如图GEC=1=108由折叠的性质可得:2=FED2+FED+GEC=1802= 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质十三、填空题13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行
16、线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行四边形,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AEFEFC,GEFAEFEFC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的
17、性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键十四、填空题14255【分析】根据a的含义求出这个数的范围,再求最大值【详解】解:设这个数是p,x=1.1x2121m41161p256p解析:255【分析】根据a的含义求出这个数的范围,再求最大值【详解】解:设这个数是p,x=1.1x2121m41161p256p是整数p的最大值为255故答案为:255【点睛】本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键十五、填空题15【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3
18、),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形十六、填空题16(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解解析:
19、(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】解:点A(4,0),B(0,3),OA4,OB3,AB5,第(3)个三角形的直角顶点的坐标是;观察图形不难发现,每3个三角形为一个循环组依次循环,一次循环横坐标增加12,20133671第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,第(2013)个三角形的直角顶点的坐标是即故答案为:【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发
20、现每3个三角形为一个循环组依次循环是解题的关键十七、解答题17(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:(1);(2)【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:(1);(2)【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键十八、解答题18(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求
21、解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=2解析:(1)x=2;(2)x=3或x=-2【分析】(1)根据立方根的定义进行求解即可;(2)根据平方根的定义进行求解,即可得出答案【详解】解:(1)(x+1)3-27=0,(x+1)3=27,x+1=3,x=2;(2)(2x-1)2-25=0,(2x-1)2=25,2x-1=5,x=3或x=-2【点睛】本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键十九、解答题19,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定定理得到ABCDEF,再由平
22、行线的性质证得结论,据此填空即可【详解】解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定定理得到ABCDEF,再由平行线的性质证得结论,据此填空即可【详解】证明:(已知),(垂直定义),(同位角相等,两直线平行),(已知),(内错角相等,两直线平行),(平行于同一直线的两条直线互相平行),(两直线平行,同位角相等)故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等【点睛】本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键二十、解答题
23、20(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积【详解】解:(解析:(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积【详解】解:(1), (2) 【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键二十一、解答题21(1);(2)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝
24、对值化简即可;(2)先求出b2,得到它的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可解析:(1);(2)【分析】(1)根据A点在数轴上的位置,可以知道2a3,根据a的范围去绝对值化简即可;(2)先求出b2,得到它的整数部分,用b2减去整数部分就是小数部分,从而求出m;同理可求出n然后求出2m2n1,再求平方根【详解】解:(1)由图知:,;(2),整数部分是3,;的整数部分是6,的平方根为【点睛】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个二十二、解答题22(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以
25、得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可解析:(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间【分析】(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;(2)根据,可以估算出边长的值在哪两个整数之间【详解】(1)由图可知,图中阴影正方形的面积是:55=17则阴影正方形的边长为:答:图中阴影部分的面积17,边长是(2)所以45边长的值在4与5之间;【点睛】本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定
26、理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算二十三、解答题23(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论解析:(1);(2),理由见解析;图见解析,或【分析】(1)作PQEF,由平行线的性质,即可得到答案;(2)过作交于,由平行线的性质,得到,即可得到答案;根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与同理,利用平行线的性质,即可求出答案【详解】解:(1)作PQEF,如图:,;(2);理由如下:如图,过作交于, , ; 当点在延
27、长线时,如备用图1: PEADBC,EPC=,EPD=,; 当在之间时,如备用图2:PEADBC,EPD=,CPE=,【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系二十四、解答题24(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF解析:(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF【分析】(1)如图1,作
28、CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后利用ACP+BCP90即可求得答案;(2)如图2,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后结合已知条件可得BCPNEF,然后利用ACP+BCP90即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PNOG,则NPOGEF,根据平行线的性质可推出OPQGOP+PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可【详解】解:(1)如图1,作CPa,CPab,AOGACP,BCP+CEF180,BCP180CEF,ACP
29、+BCP90,AOG+180CEF90,AOG46,CEF136,故答案为136;(2)AOG+NEF90理由如下:如图2,作CPa,则CPab,AOGACP,BCP+CEF180,而NEF+CEF180,BCPNEF,ACP+BCP90,AOG+NEF90;(3)如图3,当点P在GF上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPQGOP+PQF,OPQ140POQ+PQF;如图4,当点P在线段GF的延长线上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPNOPQ+QPN,GOPOPQ+PQF,140POQOPQ+PQF【点睛】本题考查了平行线的性质
30、以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键二十五、解答题25【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+解析:【现象解释】见解析;【尝试探究】BEC = 70;【深入思考】 b = 2a.【分析】现象解释根据平面镜反射光线的规律得1=2,3=4,再利用2+3=90得出1+2+3+4=180,即可得出DCB+ABC=180,即可证得ABCD;尝试探究根据三角形内角和定理求得2+3=125,根据平面镜反射光线的规律得1=2,3
31、=4,再利用平角的定义得出1+2+EBC+3+4+BCE=360,即可得出EBC+BCE=360-250=110,根据三角形内角和定理即可得出BEC=180-110=70;深入思考利用平角的定义得出ABC=180-22,BCD=180-23,利用外角的性质BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,而BOC=3-2=,即可证得=2【详解】现象解释如图2,OMON,CON=90,2+3=901=2,3=4,1+2+3+4=180,DCB+ABC=180,ABCD;【尝试探究】如图3,在OBC中,COB=55,2+3=125,1=2,3=4,1+2+3+4=250,1+2+EBC+3+4+BCE=360,EBC+BCE=360-250=110,BEC=180-110=70;【深入思考】如图4,=2,理由如下:1=2,3=4,ABC=180-22,BCD=180-23,BED=ABC-BCD=(180-22)-(180-23)=2(3-2)=,BOC=3-2=,=2【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键