1、人教版七年级下册数学期末学业水平题含解析一、选择题1的平方根是()A4BC2D2把“笑脸”进行平移,能得到的图形是( )ABCD3在平面直角坐标系中,下列点中位于第四象限的是( )ABCD4有下列命题,的算术平方根是2;一个角的邻补角一定大于这个角;在同一平面内,垂直于同一条直线的两直线平行;平行于同一条直线的两条直线互相平行其中假命题有( )ABCD5如图,直线,点在直线上,下列结论正确的是( )ABCD6下列运算正确的是()A=6BC=2D23=57如图,中,平分,于点,则的度数为( )A134B124C114D1048如图所示,平面直角坐标系中,轴负半轴有一点,点先向上平移1个单位至,接
2、着又向右平移1个单位至点,然后再向上平移1个单位至点,向右平移1个单位至点,照此规律平移下去,点平移至点时,点的坐标为( )ABCD九、填空题9的平方根是_十、填空题10若点与关于轴对称,则_十一、填空题11如图,在ABC中,CD是它的角平分线,DEAC于点 E若BC6cm,DE2cm,则BCD的面积为_cm2十二、填空题12如图将一张长方形纸片沿EF折叠后,点A、B分别落在A、B的位置,如果2=70,则1的度数是_十三、填空题13如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处若12130,则BC_十四、填空题14对于有理数a,b,规定一种新运算:ab=ab+b,如23=
3、23+3=9下列结论:(3)4=8;若ab=ba,则a=b;方程(x4)3=6的解为x=5;(ab)c=a(bc)其中正确的是_(把所有正确的序号都填上)十五、填空题15已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是_十六、填空题16如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1) (1,1) (1,0),每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是_十七、解答题17(1)计算:(2)解方程:十八、解答题18求下列各式中x的值(
4、1)4x264;(2)3(x1)3+240十九、解答题19如图,BD平分ABC,F在AB上,G在AC上,FC与BD相交于点H,34180,试说明12(请通过填空完善下列推理过程)解:34180(已知),FHD4( )3FHD180(等量代换)FGBD( )1 (两直线平行,同位角相等)BD平分ABC,ABD (角平分线的定义)12(等量代换)二十、解答题20如图,的顶点坐标分别为:,将平移得到,使点的对应点为(1)可以看作是由先向左平移 个单位,再向下平移 个单位得到的;(2)在图中作出,并写出点、的对应点、的坐标;(3)求的面积二十一、解答题21计算:(1); (2)12+(2)3;(3)已
5、知实数a、b满足+|b1|=0,求a2017+b2018的值(4)已知+1的整数部分为a,1的小数部分为b,求2a+3b的值二十二、解答题22如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上(1)求正方形的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标二十三、解答题23如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数二十四、解答题24问题情境(1)如图1,已知,求的度数佩佩同学的思路:
6、过点作,进而,由平行线的性质来求,求得 ;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记如图2,当点在两点之间运动时,请直接写出与之间的数量关系;如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由二十五、解答题25(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B
7、、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由【参考答案】一、选择题1D解析:D【分析】先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答【详解】解:,4的平方根是,故选D【点睛】本题考查了平方根,解题的关键是要先算出的值和掌握平方根的定义,并学会区分平方根和算术平方根2D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断【详解】解:观察图形可知图形进行平移,能得到图形D故选:D【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,
8、对应点的连线相等且互相平行即可判断【详解】解:观察图形可知图形进行平移,能得到图形D故选:D【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小3C【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解【详解】解:A、在y轴上,故本选项不符合题意;B、在第二象限,故本选项不符合题意;C、在第四象限,故本选项符合题意;D、在第三象限,故本选项不符合题意故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限4A【分析】根据算术平方根的定义,邻补角的定义,平
9、行线的判定逐一分析判断即可【详解】,的算术平方根是,是假命题;大于的角的的邻补角小于这个角,是假命题;在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;平行于同一条直线的两条直线互相平行,正确,是真命题所以假命题有故选A【点睛】本题考查了算术平方根的定义,邻补角的定义,平行线的判定等知识,掌握以上知识是解题的关键5D【分析】根据两直线平行,同旁内角互补可得1AOF180,再根据两直线平行,内错角相等可得3AOC,而通过AOFAOC-2,整理可得13-2180【详解】解:ABEF,1AOF180,CDAB,3AOC,又AOFAOC2=3-2,13-2180故选:D【点睛】本题主要考查平
10、行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键6B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得【详解】A、,此选项计算错误;B、,此选项计算正确;C、,此选项计算错误;D、23=6,此选项计算错误;故选:B【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键7B【分析】已知AE平分BAC,EDAC,根据两直线平行,同旁内角互补可知DEA的度数,再由周角为360,求得BED的度数即可【详解】解:AE平分BAC,BAE=CAE=34,EDAC,CAE+AED=180,DEA=180-34=1
11、46,BEAE,AEB=90,AEB+BED+AED=360,BED=360-146-90=124,故选:B【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键8C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2解析:C【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),A2n-1(-2
12、+n,n), ,A2021(1009,1011),故选:C【点睛】本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型九、填空题9【详解】【分析】先确定,再根据平方根定义可得的平方根是.【详解】因为,6的平方根是,所以的平方根是.故正确答案为.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示解析:【详解】【分析】先确定,再根据平方根定义可得的平方根是.【详解】因为,6的平方根是,所以的平方根是.故正确答案为.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义.十、填空题100【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相
13、反数,纵坐标相等的特点进行解题即可.【详解】点与关于轴对称,故答案为:0【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】点与关于轴对称,故答案为:0【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键十一、填空题116【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又
14、BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键十二、填空题1255【分析】先由矩形的对边平行及平行线的性质知BFC=2=70,再根据折叠的性质可得答案【详解】四边形ABCD是矩形,ADBC,BFC=2=70,1+解析:55【分析】先由矩形的对边平行及平行线的性质知BFC=2=70,再根据折叠的性质可得答案【详解】四边形ABCD是矩形,ADBC,BFC=2=70,1+BFE=180-BFC=110,由折叠知1=BFE,1=BFE=55,故答案为:55【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质十三、填空
15、题13115【分析】先根据1+2=130得出AMN+DNM的度数,再由四边形内角和定理即可得出结论【详解】解:1+2=130,AMN+DNM= =115A+解析:115【分析】先根据1+2=130得出AMN+DNM的度数,再由四边形内角和定理即可得出结论【详解】解:1+2=130,AMN+DNM= =115A+D+(AMN+DNM)=360,A+D+(B+C)=360,B+C=AMN+DNM=115故答案为:115【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键十四、填空题14【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=34+4=8,
16、所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若解析:【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断【详解】(3)4=34+4=8,所以正确;ab=ab+b,ba=ab+a,若a=b,两式相等,若ab,则两式不相等,所以错误;方程(x4) )3=6化为3(x4)+3=6,解得x=5,所以正确;左边=(ab) c=(ab+b) )c=(ab+b)c+c=abc+bc+c右边=a(bc)=a(bc+c)=a(bc+c) +(bc+c)=abc+ac+bc+c2两式不相等,所以错误综上所述,正确的说法有故答案为.【点睛】有理数的混合运算, 解一元一次方程,属于定义新
17、运算专题,解决本题的关键突破口是准确理解新定义本题主要考查学生综合分析能力、运算能力十五、填空题15(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐解析:(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐标为(4,3)故答案为:(4,3) 【点睛】本题考查点的坐标,利用数形结合思想解题是关键十六、填空题16(5,6)【分析】根据题意判断
18、出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳动;跳到(2,2)位置用时23=6秒,下一步向左跳动;跳到(3,3)位置用时34=12秒,下一步向下跳动;跳到(4,4)位置用时45=20秒,下一步向左跳动;由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向下跳动;当n为
19、偶数时,下一步向左跳动;第67=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6)【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间十七、解答题17(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式= (2)解:【点睛】本题考查的是实数的运算,求一个数的立方根解析:(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可【详解】(1)原式= (2)解:
20、【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键十八、解答题18(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)解析:(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)3+24=0,3(x-1)3=-24,(x-1)3=-8,x-1=-2,x=-1【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解
21、十九、解答题19对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=180,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,解析:对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【分析】求出3+FHD=180,根据平行线的判定得出FGBD,根据平行线的性质得出1=ABD,根据角平分线的定义得出ABD=2即可【详解】解:3+4=180(已知),FHD=4(对顶角相等), 3+FHD=180(等量代换), FGBD(同旁内角互补,两直线平行), 1=ABD(两直线平行,同位角相等), BD平分ABC,
22、 ABD=2(角平分线的定义), 1=2(等量代换), 故答案为:对顶角相等,FHD,同旁内角互补,两直线平行,ABD,两直线平行,同位角相等,2【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键二十、解答题20(1)6;6;(2)图见解析,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形(3)利用间接求面积的方法,即可求出三角形解析:(1)6;6;(2)图见解析,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平
23、移后的图形(3)利用间接求面积的方法,即可求出三角形的面积【详解】解:(1)平移后对应点为,可以看作是由先向左平移6个单位,再向下平移6个单位得到的故答案为:6;6;(2)作出如图所示点、的对应点、的坐标分别为:,;(3)将三角形补成如图所示的正方形,则其面积为:【点睛】本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形二十一、解答题21(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平解析:(1)0;(2)-3;(3)2;
24、(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案利用绝对值以及平方根的非负性质得出a,b的值,进而得出答案;直接利用2的范围进而得出a,b的值,即可得出答案【详解】解:;,;的整数部分为a,的小数部分为b,【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键二十二、解答题22(1)面积为29,边长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边
25、长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可【详解】解:(1)正方形的面积,正方形边长为;(2)建立如图平面直角坐标系,则,【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键二十三、解答题23(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1) ;(2) ;【分析】(1)由平行线的
26、性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键二十四、解答题24(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;
27、(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;解析:(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;过P作PQDF,依据平行线的性质可得=QPA,=QPE,即可得到APE=APQ-EPQ=-【详解】解:(1)过点P作PGAB,则PGCD,由平行线的性质可得B+BPG=180,C+CPG=180,又PBA=125,PCD=155,BPC=360-125-155=80,故答案为:80;(2)如图2,过点P作FD的平行线PQ,则DFPQAC,=EPQ,
28、=APQ,APE=EPQ+APQ=+,APE与,之间的数量关系为APE=+;如图3,APE与,之间的数量关系为APE=-;理由:过P作PQDF,DFCG,PQCG,=QPA,=QPE,APE=APQ-EPQ=-【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论二十五、解答题25(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+
29、EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用