资源描述
人教版中学七年级下册数学期末学业水平试卷及解析
一、选择题
1.如图,直线截、分别交于、两点,则的同位角是( )
A. B. C. D.
2.下列车标,可看作图案的某一部分经过平移所形成的是( )
A. B. C. D.
3.如果在第三象限,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列四个说法:①连接两点之间的线段叫做这两点间的距离;②经过直线外一点,有且只有一条直线与这条直线平行;③a2的算术平方根是a;④的立方根是4.其中假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于( )
A.35° B.45° C.50° D.55°
6.下列关于立方根的说法中,正确的是( )
A.的立方根是 B.立方根等于它本身的数有
C.的立方根为 D.一个数的立方根不是正数就是负数
7.如图,AB∥CD,将一块三角板(∠E=30°)按如图所示方式摆放,若∠EFH=25°,求∠HGD的度数( )
A.25° B.30° C.55° D.60°
8.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,…,按这样的运动规律,经过第2021次运动后,动点的坐标是( )
A. B. C. D.
九、填空题
9.已知+|3x+2y﹣15|=0,则=_____.
十、填空题
10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.
十一、填空题
11.如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则__________.
十二、填空题
12.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=_____°.
十三、填空题
13.如图,将长方形纸片沿折叠,使得点落在边上的点处,点落在点处,若,则的度数为______.
十四、填空题
14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果,那么.
十五、填空题
15.已知点、,点P在轴上,且的面积为5,则点P的坐标为__________.
十六、填空题
16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.
十七、解答题
17.计算.
(1);
(2).
十八、解答题
18.已知,,求下列各式的值
;
十九、解答题
19.如图所示,已知BD⊥CD于D,EF⊥CD于F,∠A=80°,∠ABC=100°.求证:∠1=∠2.
证明:∵BD⊥CD,EF⊥CD(已知)
∴∠BDC=∠EFC=90°(垂直的定义)
∴ (同位角相等,两直线平行)
∴∠2=∠3
∵∠A=80°,∠ABC=100°(已知)
∴∠A+∠ABC=180°
∴AD//BC
∴ (两直线平行,内错角相等)
∴∠1=∠2 .
二十、解答题
20.已知:如图,把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A′B′C′,
(1)画出△A′B′C′,写出A′、B′、C′的坐标;
(2)点P在y轴上,且S△BCP=4S△ABC,直接写出点P的坐标.
二十一、解答题
21.我们知道是无理数,其整数部分是1,于是小明用-1来表示的小数部分.
请解答下列问题:
(1)的整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求a+b-的值;
(3)已知10+=x+y,其中x是整数,且0<y<1,求x-y的相反数.
二十二、解答题
22.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形.
(1)大正方形的边长是________;
(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.
二十三、解答题
23.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.
(1)如图1,若∠OPQ=82°,求∠OPA的度数;
(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;
(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.
二十四、解答题
24.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、、、,做成折线,如图1,且在折点B、C、D处均可自由转出.
(1)如图2,小明将折线调节成,,,判断是否平行于,并说明理由;
(2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程.
(3)若,,,请直接写出此时的度数.
二十五、解答题
25.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.
(1)如图1,点D在线段CG上运动时,DF平分∠EDB
①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ;
②试探究∠AFD与∠B之间的数量关系?请说明理由;
(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同位角的定义:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,进行判断即可.
【详解】
解:如图所示,
∠1的同位角为∠3,
故选B.
【点睛】
本题主要考查了同位角的定义,解题的关键在于能够熟练掌握同位角的定义.
2.D
【分析】
根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.
【详解】
解:A、不是经过平移所形成的,故此选项错误;
B、不是是经过平移所形成的,故此选项错误;
C、不是经过平
解析:D
【分析】
根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.
【详解】
解:A、不是经过平移所形成的,故此选项错误;
B、不是是经过平移所形成的,故此选项错误;
C、不是经过平移所形成的,故此选项错误;
D、是经过平移所形成的,故此选项正确;
故选:D.
【点睛】
此题主要考查了利用平移设计图案,关键是掌握平移定义.
3.B
【分析】
根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解.
【详解】
解:∵点P(a,b)在第三象限,
∴a<0,b<0,
∴a+b<0,ab>0,
∴点Q(a+b,ab)在第二象限.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
利用两点间的距离的定义、平行线的判定、算术平方根的定义及立方根的求法分别判断后即可确定正确的选项.
【详解】
解:①连接两点之间的线段的长度叫做这两点间的距离
,故原命题错误,是假命题,符合题意;
②经过直线外一点,有且只有一条直线与这条直线平行,
正确,是真命题,不符合题意;
③a2的算术平方根是a(a≥0),
故原命题错误,是假命题,符合题意;
④的立方根是2,
故原命题错误,是假命题,符合题意;
假命题有3个,
故选:C.
【点睛】
本题主要考查真假命题,两点见的距离,平行线的判定,算术平方根,立方根的求法等知识点,熟知相关定义以及运算法则是解题的关键.
5.A
【分析】
过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.
【详解】
解:过点E作EF∥AB,则EF∥CD,如图所示.
∵EF∥AB,
∴∠BAE=∠AEF.
∵EF∥CD,
∴∠C=∠CEF.
∵AE⊥CE,
∴∠AEC=90°,即∠AEF+∠CEF=90°,
∴∠BAE+∠C=90°.
∵∠1=125°,∠1+∠BAE=180°,
∴∠BAE=180°﹣125°=55°,
∴∠C=90°﹣55°=35°.
故选:A.
【点睛】
本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.
6.B
【分析】
各项利用立方根定义判断即可.
【详解】
解:A、-9的立方根是,故该选项错误;
B、立方根等于它本身的数有-1,0,1,故该选项正确;
C、,-8的立方根为-2,故该选项错误;
D、0的立方根是0,故该选项错误.
故选:B.
【点睛】
此题考查了立方根,熟练掌握立方根的定义是解本题的关键.
7.C
【分析】
先根据三角形外角可求∠EHB=∠EFH+∠E=55°,根据平行线性质可得∠HGD=∠EHB=55°即可.
【详解】
解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°,
∴∠EHB=∠EFH+∠E=25°+30°=55°,
∵AB∥CD,
∴∠HGD=∠EHB=55°.
故选C.
【点睛】
本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.
8.C
【分析】
根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.
【详解】
解:设第n次运动后的点记为An,
根据变化规律可知,, ......,
∴,n为正整数,
解析:C
【分析】
根据第1、5、9、......位置上点的变化规律即可求出第2021个位置的点的坐标.
【详解】
解:设第n次运动后的点记为An,
根据变化规律可知,, ......,
∴,n为正整数,
取,则,
∴,
故选:C.
【点睛】
本题主要考查点的坐标的变化规律,关键是要发现第1、5、9、......的位置上的点的变化规律,第2021个点刚好满足此规律.
九、填空题
9.3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛
解析:3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛】
考查了非负数的性质,正确得出x,y的值是解题关键.
十、填空题
10.21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所
解析:21:05.
【分析】
利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【详解】
解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.
故答案为21:05
【点睛】
本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
十一、填空题
11.【分析】
根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.
【详解】
解:设BC延长与点D,
∵,
的角平分线与的外角的角平分线交于点,
∴
,
同
解析:
【分析】
根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.
【详解】
解:设BC延长与点D,
∵,
的角平分线与的外角的角平分线交于点,
∴
,
同理可得,
,
∴,
∵,
∴,
故答案为:.
【点睛】
本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.
十二、填空题
12.70
【分析】
根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.
【详解】
∵DE∥AC,
∴∠C=∠1=70°,
∵AF∥BC,
∴∠2=∠C=70°.
故答
解析:70
【分析】
根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.
【详解】
∵DE∥AC,
∴∠C=∠1=70°,
∵AF∥BC,
∴∠2=∠C=70°.
故答案为70.
【点睛】
本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
十三、填空题
13.111°
【分析】
结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.
【详解】
根据题意,得,,,
∴,
∴
∴
∴
∵
解析:111°
【分析】
结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.
【详解】
根据题意,得,,,
∴,
∴
∴
∴
∵
∴
∴
故答案为:111°.
【点睛】
本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.
十四、填空题
14.②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③
解析:②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③两直线平行,同位角相等,故错误,是假命题;
④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.
证明:∵a//b,
∴∠CAE+∠ACF=180°.
又AB平分∠CAE,CD平分∠ACF,
所以∠1=∠CAE,∠2=∠ACF.
所以∠1+∠2=∠CAE+∠ACF
=(∠CAE+∠ACF)=×180°=90°.
又∵△ACG的内角和为180°,
∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,
∴AB⊥CD.
∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;
⑤如果,那么,正确,是真命题.
故答案为:②④⑤.
【点睛】
此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.
十五、填空题
15.(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4
解析:(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4,0)或(6,0),
故答案为:(-4,0)或(6,0)
【点睛】
此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.
十六、填空题
16.(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐
解析:(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.
【详解】
解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于直线上最右边的点的横坐标的平方,
例如:右下角的点的横坐标为1,共有1个,,
右下角的点的横坐标为2时,如下图点,共有4个,,
右下角的点的横坐标为3时,共有9个,,
右下角的点的横坐标为4时,如下图点,共有16个,,
右下角的点的横坐标为时,共有个,
,45是奇数,
第2025个点是,
,
点是向上平移4个单位,
第2021个点是.
故答案为:.
【点睛】
本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.
十七、解答题
17.(1)3;(2)
【分析】
(1)根据有理数加减混合运算法则求解即可;
(2)根据平方根与立方根的定义先化简,然后合并求解即可.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查有理数
解析:(1)3;(2)
【分析】
(1)根据有理数加减混合运算法则求解即可;
(2)根据平方根与立方根的定义先化简,然后合并求解即可.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.
十八、解答题
18.(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解
解析:(1)25;(2)37
【分析】
(1)利用完全平方差公式求解.
(2)先配方,再求值.
【详解】
解:(1)
(2)
【点睛】
本题考查完全平方公式及其变形式,根据公式特征进行变形是求解本题的关键.
十九、解答题
19.BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.
【分析】
根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据
解析:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.
【分析】
根据垂直推出BD∥EF,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC+∠A=180°,根据平行线的判定得出AD∥BC,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2.
【详解】
证明:∵BD⊥CD,EF⊥CD(已知),
∴∠BDC=∠EFC=90°(垂直的定义),
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠3(两直线平行,同位角相等),
∵∠A=80°,∠ABC=100°(已知),
∴∠A+∠ABC=180°,
∴AD∥BC(同旁内角互补,两直线平行),
∴∠1=∠3(两直线平行,内错角相等),
∴∠1=∠2(等量代换).
故答案为:BD∥EF;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.
【点睛】
本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键.
二十、解答题
20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;
(2)设P(0,m
解析:(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P(0,10)或(0,-12).
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可解决问题;
(2)设P(0,m),构建方程解决问题即可.
【详解】
解:(1)如图,△A′B′C′即为所求,A′(1,5),B′(0,2),C′(4,2);
(2)设P(0,m),
由题意:×4×|m+2|=4××4×3,
解得m=10或-12,
∴P(0,10)或(0,-12).
【点睛】
本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.
二十一、解答题
21.(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解
解析:(1)3,;(2)1;(3)
【分析】
(1)根据题意即可求解;
(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;
(3)根据题意确定出x与y的值,求出x-y的相反数即可.
【详解】
(1),
的整数部分为3,小数部分为;
(2),
的整数部分为2,小数部分为,
,
,
的整数部分为3,
,
;
(3),
的整数部分为1,小数部分为,
10+=x+y,其中x是整数,且0<y<1,
,
的相反数是:.
【点睛】
本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.
二十二、解答题
22.(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再
解析:(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.
【详解】
解:(1)两个正方形面积之和为:2×8=16(cm2),
∴拼成的大正方形的面积=16(cm2),
∴大正方形的边长是4cm;
故答案为:4;
(2)设长方形纸片的长为2xcm,宽为xcm,
则2x•x=14,
解得:,
2x=2>4,
∴不存在长宽之比为且面积为的长方形纸片.
【点睛】
本题考查了算术平方根,能够根据题意列出算式是解此题的关键.
二十三、解答题
23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解
解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;
(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.
【详解】
解:(1)∵∠OPA=∠QPB,∠OPQ=82°,
∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,
(2)作PC∥m,
∵m∥n,
∴m∥PC∥n,
∴∠AOP=∠OPC=43°,
∠BQP=∠QPC=49°,
∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,
∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,
(3)∠OPQ=∠ORQ.
理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,
∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,
∴∠AOP=∠DOR,∠BQP=∠RQC,
∴∠OPQ=∠ORQ.
【点睛】
本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.
二十四、解答题
24.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C
解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°
【分析】
(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;
(2)根据题意作AB∥CD,即可∠B=∠C=35°;
(3)分别画图,根据平行线的性质计算出∠B的度数.
【详解】
解:(1)AB平行于ED,理由如下:
如图2,过点C作CF∥AB,
∴∠BCF=∠B=50°,
∵∠BCD=85°,
∴∠FCD=85°-50°=35°,
∵∠D=35°,
∴∠FCD=∠D,
∴CF∥ED,
∵CF∥AB,
∴AB∥ED;
(2)如图,即为所求作的图形.
∵AB∥CD,
∴∠ABC=∠C=35°,
∴∠B的度数为:35°;
∵A′B∥CD,
∴∠ABC+∠C=180°,
∴∠B的度数为:145°;
∴∠B的度数为:35°或145°;
(3)如图2,过点C作CF∥AB,
∵AB∥DE,
∴CF∥DE,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∴∠B=∠BCF=50°.
答:∠B的度数为50°.
如图5,过C作CF∥AB,则AB∥CF∥CD,
∴∠FCD=∠D=35°,
∵∠BCD=85°,
∴∠BCF=85°-35°=50°,
∵AB∥CF,
∴∠B+∠BCF=180°,
∴∠B=130°;
如图6,∵∠C=85°,∠D=35°,
∴∠CFD=180°-85°-35°=60°,
∵AB∥DE,
∴∠B=∠CFD=60°,
如图7,同理得:∠B=35°+85°=120°,
综上所述,∠B的度数为50°或130°或60°或120°.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.
二十五、解答题
25.(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由
解析:(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;
②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;
(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.
【详解】
(1)①若∠BAC=100°,∠C=30°,
则∠B=180°-100°-30°=50°,
∵DE∥AC,
∴∠EDB=∠C=30°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∴∠DGF=∠B+∠BAG=50°+50°=100°,
∴∠AFD=∠DGF+∠FDG=100°+15°=115°;
若∠B=40°,则∠BAC+∠C=180°-40°=140°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG
=
故答案为:115°;110°;
②;
理由如下:由①得:∠EDB=∠C,,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG
=∠B+∠BAG+∠FDG
=
;
(2)如图2所示:;
理由如下:
由(1)得:∠EDB=∠C,,,
∵∠AHF=∠B+∠BDH,
∴∠AFD=180°-∠BAG-∠AHF
.
【点睛】
本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.
展开阅读全文