1、第3讲数列的综合问题1(2015湖南)已知a0,函数f(x)eaxsin x(x0,)记xn为f(x)的从小到大的第n(nN*)个极值点,证明:数列f(xn)是等比数列2(2014课标全国)已知数列an满足a11,an13an1.(1)证明an是等比数列,并求an的通项公式;(2)证明.1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.将数列与实际应用问题相结合,考查数学建模和数学应用.热点一利用Sn,an的关系式求an1数列an中,an与Sn的关系:an.2求数列通项的常用方法(1)公式法:利用
2、等差(比)数列求通项公式(2)在已知数列an中,满足an1anf(n),且f(1)f(2)f(n)可求,则可用累加法求数列的通项an.(3)在已知数列an中,满足f(n),且f(1)f(2)f(n)可求,则可用累积法求数列的通项an.(4)将递推关系进行变换,转化为常见数列(等差、等比数列)例1数列an中,a11,Sn为数列an的前n项和,且满足1(n2)求数列an的通项公式思维升华给出Sn与an的递推关系,求an,常用思路:一是利用SnSn1an(n2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.跟踪演练1已知正项数列an的前n项和为S
3、n,且Sn,则数列an的通项公式是_热点二数列与函数、不等式的综合问题数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出Sn的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问题例2已知二次函数yf(x)的图象经过坐标原点,其导函数为f(x)6x2,数列an的前n项和为Sn,点(n,Sn)(nN*)均在函数yf(x)的图象上(1)求数列an的通项公式;(2)设bn,Tn是数列bn的前n项和,求使得Tn0且a1)的图象上一点,数列
4、bn的前n项和Snf(n)1.(1)求数列an和bn的通项公式;(2)求证:数列的前n项和Tn.提醒:完成作业专题四第3讲二轮专题强化练专题四 第3讲数列的综合问题A组专题通关1(2015成都外国语学校月考)已知数列an的前n项和Snan1(a0),则数列an()A一定是等差数列B一定是等比数列C或者是等差数列,或者是等比数列D既不可能是等差数列,也不可能是等比数列2若数列an的通项公式是an(1)n(3n2),则a1a2a10等于()A15 B12C12 D153(2015日照一模)已知数列an的前n项和Snn26n,则|an|的前n项和Tn等于()A6nn2 Bn26n18C. D.4(2
5、015成都七中高三上学期期中)今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织()尺布(不作近似计算)()A. B.C. D.5已知定义在R上的函数f(x)、g(x)满足ax,且f(x)g(x)f(x)g(x),若有穷数列 (nN*)的前n项和等于,则n等于()A5 B6 C7 D86若数列an的前n项和Snan,则an的通项公式是an_.7等差数列an的前n项和为Sn,已知S100,S1525,则nSn的最小值为_8对于数列an,定义数列an1an为数列an的“差数列”,若a12,an的“差数列”的通项
6、公式为2n,则数列an的前n项和Sn_.9已知数列an的前n项和Sn满足:Sn2an2n(nN*)(1)求数列an的通项an;(2)若数列bn满足bnlog2(an2),Tn为数列的前n项和,求证:Tn.10(2015杭州质检)已知数列an的首项a11,an11,其中nN*.(1)设bn,求证:数列bn是等差数列,并求出an的通项公式;(2)设cn,数列cncn2的前n项和为Tn,是否存在正整数m,使得Tn0)及两点A1(x1,0)和A2(x2,0),其中x2x10.过A1,A2分别作x轴的垂线,交曲线C于B1,B2两点,直线B1B2与x轴交于点A3(x3,0),那么()Ax1,x2成等差数列
7、Bx1,x2成等比数列Cx1,x3,x2成等差数列Dx1,x3,x2成等比数列12记数列2n的前n项和为an,数列的前n项和为Sn,数列bn的通项公式为bnn8,则bnSn的最小值为_13已知向量a(2,n),b(Sn,n1),nN*,其中Sn是数列an的前n项和,若ab,则数列的最大项的值为_14数列an的前n项和为Sn,a11,且对任意正整数n,点(an1,Sn)在直线2xy20上(1)求数列an的通项公式;(2)是否存在实数,使得数列Snn为等差数列?若存在,求出的值;若不存在,请说明理由学生用书答案精析第3讲数列的综合问题高考真题体验1证明f(x)aeaxsin xeaxcos xea
8、x(asin xcos x)eaxsin(x),其中tan ,0.令f(x)0,由x0得xm,即xm,mN*,对kN,若2kx(2k1),即2kx(2k1),则f(x)0;若(2k1)x(2k2),即(2k1)x(2k2),则f(x)0.因此,在区间(m1),m)与(m,m)上,f(x)的符号总相反于是当xm(mN*)时,f(x)取得极值,所以xnn(nN*)此时,f(xn)ea(n)sin(n)(1)n1ea(n)sin .易知f(xn)0,而ea是常数,故数列f(xn)是首项为f(x1)ea()sin ,公比为ea的等比数列2(1)解由an13an1得an13(an)又a1,所以an是首项
9、为,公比为3的等比数列an,因此an的通项公式为an.(2)证明由(1)知.因为当n1时,3n123n1,所以.于是1(1).所以0,所以anan10,则anan12,所以数列an是首项为2,公差为2的等差数列,故an2n.例2解(1)设二次函数f(x)ax2bx(a0),则f(x)2axb.由于f(x)6x2,得a3,b2,所以f(x)3x22x.又因为点(n,Sn)(nN*)均在函数yf(x)的图象上,所以Sn3n22n.当n2时,anSnSn13n22n3(n1)22(n1)6n5;当n1时,a1S13122615,所以an6n5(nN*)(2)由(1)得bn,故Tn(1)()()(1)
10、因此,要使(1).所以Tn2.综上可得对任意的nN*,均有Tn.例3(1)解当n6时,数列an是首项为120,公差为10的等差数列,故an12010(n1)13010n,当n7时,数列an从a6开始的项构成一个以a61306070为首项,以为公比的等比数列,故an70()n6,所以第n年年初M的价值an(2)证明设Sn表示数列an的前n项和,由等差数列和等比数列的求和公式,得当1n6时,Sn120n5n(n1),An1205(n1)1255n9580,当n7时,由于S6570,故Sn570(a7a8an)5707041()n6780210()n6.因为an是递减数列,所以An是递减数列因为An
11、,A882.73480,A976.8230,所以Tn0)当a1时,Sn0,是等差数列而不是等比数列;当a1时是等比数列故选C.2A记bn3n2,则数列bn是以1为首项,3为公差的等差数列,所以a1a2a9a10(b1)b2(b9)b10(b2b1)(b4b3)(b10b9)5315.3C由Snn26n可得,当n2时,anSnSn1n26n(n1)26(n1)2n7.当n1时,S15a1,也满足上式,an2n7,nN*.n3时,an3时,an0.Tn4C由题意可知,该女每天的织布量成等差数列,首项是5,公差为d,前30项和为390.根据等差数列前n项和公式,有390305d,解得d.5A令h(x
12、),则h(x)0,故函数h(x)为减函数,即0a1.再根据,得a,解得a2(舍去)或者a.所以n,数列的前n项和是1,由于1,所以n5.6(2)n1解析当n1时,a11;当n2时,anSnSn1anan1,故2,故an(2)n1.749解析设数列an的首项和公差分别为a1,d,则则nSnn3nn2.设函数f(x)x2,则f(x)x2x,当x(0,)时,f(x)0,所以函数f(x)minf(),但649,所以最小值为49.82n12解析an1an2n,an(anan1)(an1an2)(a2a1)a12n12n2222222n222n.Sn2n12.9(1)解当nN*时,Sn2an2n,则当n2
13、时,Sn12an12(n1),两式相减得an2an2an12,即an2an12,an22(an12),2,当n1时,S12a12,则a12,an2是以a124为首项,2为公比的等比数列,an242n1,an2n12.(2)证明bnlog2(an2)log22n1n1,则Tn,Tn,两式相减得Tn,Tn,当n2时,TnTn10,Tn为递增数列,TnT1.10解(1)bn1bn2(常数),数列bn是等差数列a11,b12,因此bn2(n1)22n,由bn得an.(2)由cn,an得cn,cncn22(),Tn2(1)2(1)3,依题意要使Tn对于nN*恒成立,只需3,即3,解得m3或m4,又m为正
14、整数,所以m的最小值为3.11A由题意,得B1,B2两点的坐标分别为(x1,),(x2,),所以直线B1B2的方程为y(xx1),令y0,得xx1x2,所以x3x1x2,因此,x1,x2成等差数列124解析根据已知,可得ann(n1),所以,所以Sn,所以bnSnn1104,当且仅当n1,即n2时等号成立,所以bnSn的最小值为4.13.解析依题意得ab0,即2Snn(n1),Sn.当n2时,anSnSn1n;又a1S11,因此ann,当且仅当n,nN*,即n2时取等号,因此数列的最大项的值为.14解(1)由题意,可得2an1Sn20.当n2时,2anSn120.,得2an12anan0,所以
15、(n2)因为a11,2a2a12,所以a2.所以an是首项为1,公比为的等比数列所以数列an的通项公式为an()n1.(2)由(1)知,Sn2.若Snn为等差数列,则S1,S22,S33成等差数列,则2(S2)S1S3,即2()1,解得2.又2时,Sn2n2n2,显然2n2成等差数列,故存在实数2,使得数列Snn为等差数列其中专业理论知识内容包括:保安理论知识、消防业务知识、职业道德、法律常识、保安礼仪、救护知识。作技能训练内容包括:岗位操作指引、勤务技能、消防技能、军事技能。二培训的及要求培训目的安全生产目标责任书为了进一步落实安全生产责任制,做到“责、权、利”相结合,根据我公司2015年度
16、安全生产目标的内容,现与财务部签订如下安全生产目标:一、目标值:1、全年人身死亡事故为零,重伤事故为零,轻伤人数为零。2、现金安全保管,不发生盗窃事故。3、每月足额提取安全生产费用,保障安全生产投入资金的到位。4、安全培训合格率为100%。二、本单位安全工作上必须做到以下内容: 1、对本单位的安全生产负直接领导责任,必须模范遵守公司的各项安全管理制度,不发布与公司安全管理制度相抵触的指令,严格履行本人的安全职责,确保安全责任制在本单位全面落实,并全力支持安全工作。 2、保证公司各项安全管理制度和管理办法在本单位内全面实施,并自觉接受公司安全部门的监督和管理。 3、在确保安全的前提下组织生产,始
17、终把安全工作放在首位,当“安全与交货期、质量”发生矛盾时,坚持安全第一的原则。 4、参加生产碰头会时,首先汇报本单位的安全生产情况和安全问题落实情况;在安排本单位生产任务时,必须安排安全工作内容,并写入记录。 5、在公司及政府的安全检查中杜绝各类违章现象。 6、组织本部门积极参加安全检查,做到有检查、有整改,记录全。 7、以身作则,不违章指挥、不违章操作。对发现的各类违章现象负有查禁的责任,同时要予以查处。 8、虚心接受员工提出的问题,杜绝不接受或盲目指挥;9、发生事故,应立即报告主管领导,按照“四不放过”的原则召开事故分析会,提出整改措施和对责任者的处理意见,并填写事故登记表,严禁隐瞒不报或降低对责任者的处罚标准。 10、必须按规定对单位员工进行培训和新员工上岗教育;11、严格执行公司安全生产十六项禁令,保证本单位所有人员不违章作业。 三、 安全奖惩: 1、对于全年实现安全目标的按照公司生产现场管理规定和工作说明书进行考核奖励;对于未实现安全目标的按照公司规定进行处罚。 2、每月接受主管领导指派人员对安全生产责任状的落19