1、八年级下册数学衢州数学期末试卷易错题(Word版含答案)一、选择题1已知是整数,则正整数n的最小值是()A2B4C6D82下列几组数中,能构成直角三角形的是()A3,4,6B5,6,7Ca,a+1,a1(a是大于4的数)D6,8,103给出下列命题,其中错误命题的个数是( )四条边相等的四边形是正方形;四边形具有不稳定性;有两个锐角对应相等的两个直角三角形全等;一组对边平行的四边形是平行四边形A1B2C3D44一次数学测试后,随机抽取八年级三班6名学生的成绩如下:80,85,86,88,88,95关于这组数据的错误说法是( )A极差是15B中位数是86C众数是88D平均数是875如图,将ABC
2、放在正方形网格中(图中每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么ABC的度数为()A90B60C30D456如图,在菱形纸片ABCD中,A=60,点E在BC边上,将菱形纸片ABCD沿DE折叠,点C落在AB边的垂直平分线上的点C处,则DEC的大小为()A30B45C60D757如图,在中,则的长是( )ABCD8如图,直线 y1 与 y2 相交于点C , y1 与 x 轴交于点 D ,与 y 轴交于点(0,1), y2 与 x 轴 交于点 B(3,0),与 y 轴交于点 A ,下列说法正确的个数有( )y1的 解 析 式 为; OA = OB ; DAOB DBCD .A2
3、 个B3个C4 个D5 个二、填空题9二次根式在实数范围内有意义,则x的取值范围是_10已知菱形ABCD的对角线AC=10,BD=8,则菱形ABCD的面积为_11若一直角三角形的两直角边长为,1,则斜边长为_12如图,将矩形沿对角线折叠,使点在点处,与交于点若,则的长为_13已知一次函数ykxb,当自变量x的取值范围是1x3时,对应的因变量y的取值范围是5y10,那么kb的值为_14如图,在ABC中,点D、E、F分别在边AB、BC、CA上,且DECA,DFBA,下列四种说法:四边形AEDF是平行四边形;如果BAC90,那么四边形AEDF是菱形;如果AD平分BAC,那么四边形AEDF是菱形;如果
4、ABAC,那么四边形AEDF是菱形其中,正确的有_(只填写序号)15如图,直线与坐标轴分别交于点A,B,点P是线段AB上一动点,过点P作PMx轴于点M,作PNy轴于点N,连接MN,则线段MN的最小值为_16如图,RtABC中,AB9,BC6,B90,将ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为 _三、解答题17(1)计算:;(2)计算:18如图,小明将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆5m处,发现此时绳子末端距离地面1m,求旗杆的高度(滑轮上方的部分忽略不计)19下图各正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点都称
5、为格点(1)在图中,画出一条以格点为端点,长度为的线段(2)在图中,以格点为顶点,画出三边长分别为3,的三角形20如图,在ABCD中,过点D作DFBC于点F,点E在边AD上,AE=CF,连结BE、CE(1)求证:四边形BFDE是矩形(2)若DE=AB,ABC=130,求DEC的度数21先阅读下列解答过程,然后再解答:形如的化简,只要我们找到两个正数,使,使得,那么便有:例如:化简解:首先把化为,这里,由于,即:,所以。问题: 填空:,; 化简:(请写出计算过程)22某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当时,单价y为_
6、元;当单价y为8.8元时,购买量x(千克)的取值范围为_;(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?23如图,在平面直角坐标系中,已知OABC的顶点A(10,0)、C(2,4),点D是OA的中点,点P在BC上由点B向点C运动(1)求点B的坐标;(2)若点P运动速度为每秒2个单位长度,点P运动的时间为t秒,当四边形PCDA是平行四边形时,求t的值;(3)当ODP是等腰三角形时,直接写出点P的坐标24如图1,平面直角坐标系中,直线交轴于点,交轴正半轴于点(1)求点的坐标;(2)
7、如图2,直线交轴负半轴于点,且,为线段上一点,过点作轴的平行线交直线于点,设点的横坐标为,线段的长为,求与之间的函数关系式;(3)在(2)的条件下,为延长线上一点,且,在线段上是否存在点,使是以为斜边的等腰直角三角形,若存在,请求出点的坐标;若不存在,请说明理由25如图,ABC和ADE都是等腰三角形,其中ABAC,ADAE,BACDAE(1)如图,连接BE、CD,求证:BECD;(2)如图,连接BD、CD,若BACDAE60,CDAE,AD3,CD5,求BD的长;(3)如图,若BACDAE90,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明【参考答案】一、选择题1C解析
8、:C【分析】因为是整数,且,则6n是完全平方数,满足条件的最小正整数n为6【详解】解:,且是整数,是整数,即6n是完全平方数;n的最小正整数值为6故选:C【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答2D解析:D【分析】根据勾股定理逆定理逐一计算即可求解【详解】解:A、因为32+4262,所以不能构成直角三角形;B、因为52+6272,所以不能构成直角三角形;C、因为a2+(a1)2(a+1)2,所以不能构成直角三角形;D、因为62+82102,所以能构成直角三角形;故选:D【点睛】本题考查勾股定理的逆定理,解题的
9、关键是熟练掌握勾股定理的逆定理3C解析:C【解析】【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答【详解】四条边相等的四边形是菱形,故错误;四边形具有不稳定性,故正确;两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA,不能判定全等,故错误;一组对边平行且相等的四边形是平行四边形,故错误;综上,错误的命题有共3个故选:C【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定4B解析:B【解析】【分析】平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出
10、最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据【详解】解:A、极差是95-80=15,故A正确;B、中位数是=87,故B错误;C、88出现了2次,则众数是88,故C正确;D、平均数是=87,故D正确故选:B【点睛】本题重点考查平均数,中位数,众数及极差的概念及求法5D解析:D【分析】根据所给出的图形求出AB、AC、BC的长以及BAC的度数,根据等腰直角三角形的性质即可得到结论【详解】解:根据图形可得:ABAC,BC,BAC90,ABC45,故选D【点睛】此题考查了勾股定理,勾股定理的逆定理、熟练掌握勾股定理的逆定理是解题的关键6D解析:D【解析】【分
11、析】连接,由菱形的性质及,得到为等边三角形,为的中点,利用三线合一得到为角平分线,得到,进而求出,由折叠的性质得到,利用三角形的内角和定理即可求出所求角的度数【详解】解:连接,如图所示:四边形为菱形,为等边三角形,为的中点,为的平分线,即,由折叠的性质得到,在中,故选:D【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键7B解析:B【解析】【分析】根据所对的直角边等于斜边的一半,然后根据勾股定理求解即可【详解】解:在中,根据勾股定理得:,即,解得:,故选:B【点睛】本题考查了直角三角形角的性质以及勾股定理,熟知直角三角形
12、所对的直角边是斜边的一半是解题的关键8A解析:A【分析】通过待定系数法,求出直线y1的解析式,于是可对进行判断;利用待定系数法求出y2的解析式为y=x+3,则可确定A(0,3),所以OA=OB,于是可对进行判断;通过两点间的距离公式求出AC、BC的长,从而对进行判断;计算EDO和ABO的度数,再通过三角形的内角和定理得出DCB的度数,即可对进行判断;通过计算BD和AB的长可对进行判断【详解】由图可知:直线y1过点(0,1),(1,2),直线y1的解析式为,所以错误;设y2的解析式为y=kx+b,把C(1,2),B(3,0)代入得:,解得:,所以y2的解析式为y=x+3,当x=0时,y=x+3=
13、3,则A(0,3),则OA=OB,所以正确;A(0,3),C(1,2),B(3,0),AC=,BC=,所以错误;在中,令y1=0,得x=1,D(1,0),OD=1OE=1,OD=OE,EDO=45OA=OB=3,ABO=45,DCB=1804545=90,DCAB,故正确;因为BD=3+1=4,而AB=3,所以AOB与BCD不全等,所以错误故正确的有故选A【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;也考查了全等三角形的判定二、填空题9x9【解析】【分析】由二次根式的非负性可得x+90,即可求解【详解】解:二次根式
14、在实数范围内有意义,x+90,x9,故答案为x9【点睛】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键10【解析】【分析】利用菱形对角线互相垂直,所以菱形的面积等于对角线乘积的一半,来求菱形的面积即可【详解】解:菱形的对角线菱形的面积故答案为:40【点睛】本题考查菱形的性质,菱形的对角线互相垂直,所以菱形的面积等于对角线乘积的一半,属于基础题型112【解析】【分析】根据勾股定理计算,得到答案【详解】解:斜边长2,故答案为2【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c212E解析:【分析】由矩形
15、和折叠的性质得到E=D=90,AE=AB=CD,CE=BC,证明AEFCDF,李永明勾股定理求出AE,再利用勾股定理即可求出AC【详解】解:四边形ABCD是矩形,E=D=90,由折叠可知:AE=AB=CD,CE=BC,又AFE=CFD,AEFCDF(AAS),EF=DF=4,AF=CF=5,AE=3,AB=CD=3,BC=AD=AF+DF=5+4=9,AC=,故答案为:【点睛】本题考查的是翻转变换的性质,矩形的性质,勾股定理,解题的关键是根据折叠得到相等的边和角,从而证明三角形全等135或10【分析】本题分情况讨论k0时,x=1时对应y=5;k0时,x=1时对应y=10【详解】解:k0时,由题
16、意得:x=1时,y=5,k-b=5;k0时,由题意得:x=1时,y=10,k-b=10;综上,k-b的值为5或10故答案为:5或10【点睛】本题考查了待定系数法求函数解析式,注意本题需分两种情况,不要漏解14D解析:【分析】根据平行四边形的判定和菱形的判定解答即可【详解】解:DECA,DFBA,四边形AEDF是平行四边形,故正确;BAC=90,四边形AEDF是平行四边形,四边形AEDF是矩形,故错误;AD平分BAC,四边形AEDF是平行四边形,四边形AEDF是菱形,故正确;AB=AC,四边形AEDF是平行四边形,不能得出AE=AF,故四边形AEDF不一定是菱形,故错误;故答案为:【点睛】此题考
17、查菱形的判定,关键是就平行四边形的判定和菱形的判定解答15【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可【详解】如图,连接,PMx轴,PNy轴,四边形是矩形,当时,最小,直线与坐标轴分别交于点A,B,解析:【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可【详解】如图,连接,PMx轴,PNy轴,四边形是矩形,当时,最小,直线与坐标轴分别交于点A,B,令,令,当时,故答案为:【点睛】本题考查了矩形的性质,勾股定理,垂线段最短,找到是解题的关键164【分析】设AQDQx,则BQABAQ9x,在RtBDQ中,用勾股定理列方程可解得x,从而可得答案【
18、详解】解:BC6,D是BC的中点,BDBC3,ABC折叠解析:4【分析】设AQDQx,则BQABAQ9x,在RtBDQ中,用勾股定理列方程可解得x,从而可得答案【详解】解:BC6,D是BC的中点,BDBC3,ABC折叠,使A点与BC的中点D重合,AQDQ,设AQDQx,则BQABAQ9x,在RtBDQ中,解得x5,BQ9x4,故答案为:4【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长三、解答题17(1)15;(2)6【分析】(1)先化简为最简二次根式,先计算括号里的,再计算二次根式乘法即可,(2)先利用平方差公式简算,和立方根,然后再算加减
19、法即可【详解】解:(1),;解析:(1)15;(2)6【分析】(1)先化简为最简二次根式,先计算括号里的,再计算二次根式乘法即可,(2)先利用平方差公式简算,和立方根,然后再算加减法即可【详解】解:(1),;(2),=,=【点睛】本题考查二次根式混合运算,最简二次根式,平方差公式,同类二次根式,掌握二次根式混合运算法则,最简二次根式,平方差公式巧用,同类二次根式及合并法则是解题关键1813m【分析】根据题意构造直角三角形,然后设旗杆高度为xm,根据勾股定理即可求解【详解】如图,设旗杆高度为m,即,中,即解得即旗杆的高度为13米【点睛】本题考查了勾股解析:13m【分析】根据题意构造直角三角形,然
20、后设旗杆高度为xm,根据勾股定理即可求解【详解】如图,设旗杆高度为m,即,中,即解得即旗杆的高度为13米【点睛】本题考查了勾股定理的应用,构造直角三角形是解题的关键19(1)见解析;(2)见解析【解析】【分析】(1)根据 实际上直角边长为2和2的直角三角形的斜边长,即可解答;(2) 实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直解析:(1)见解析;(2)见解析【解析】【分析】(1)根据 实际上直角边长为2和2的直角三角形的斜边长,即可解答;(2) 实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直角三角形的斜边长,即可解答【详解】(1)本题中
21、 实际上直角边长为2和2的直角三角形的斜边长,如图线段即为所求线段;(2)本题中 实际上是直角边长为2和2的直角三角形的斜边长,实际上是直角边长为2和1的直角三角形的斜边长,据此可找出如图中的三角形即为所求【点睛】本题主要考查了勾股定理,解题的关键是确定直角三角形的直角边长后根据边长画出所求的线段和三角形20(1)见解析;(2)25【分析】(1)由题意可证四边形DFBE是平行四边形,且DEAB,可得结论;(2)根据平行四边形的性质求得ADC=130,DE=CD,再利用等腰三角形的性质即可求解析:(1)见解析;(2)25【分析】(1)由题意可证四边形DFBE是平行四边形,且DEAB,可得结论;(
22、2)根据平行四边形的性质求得ADC=130,DE=CD,再利用等腰三角形的性质即可求解【详解】(1)证明:在ABCD中,ADBC,AD=BC,EDBFED=ADAE,BF=BCCF,AE=CF,ED=BF四边形BFDE是平行四边形DFBC,DFB=90,四边形BFDE是矩形;(2)解:在ABCD中,AB=CD,ABC=ADCDE=AB,ABC=130,DE=CD,ADC=130DEC=(180130)=25【点睛】本题考查了矩形的判定,平行四边形的性质,运用等腰三角形的判定和性质解决问题是本题的关键21(1),;(2).【解析】【分析】由条件对式子进行变形,利用完全平方公式对的形式化简后就可以
23、得出结论了【详解】解:(1);(2)【点睛】本题考查了二次根式的化简解析:(1),;(2).【解析】【分析】由条件对式子进行变形,利用完全平方公式对的形式化简后就可以得出结论了【详解】解:(1);(2)【点睛】本题考查了二次根式的化简求值,涉及了配方法的运用和完全平方根式的运用及二次根式性质的运用22(1)10;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元【分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定系数法,设函数解析:(1)10;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元【
24、分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;(3)将代入(2)函数解析式即可【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元故答案为:10;(2)设函数图象的解析式 (k是常数,b是常数,),图象过点,可得:,解得,函数图象的解析式:;(3)当时,答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元【点睛】本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键23
25、(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,于是得到 ,可求出点的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三解析:(1)B(12,4);(2);(3)【分析】(1)由四边形是平行四边形,得到,于是得到 ,可求出点的坐标;(2)根据四边形是平行四边形,得到,即,解方程即可得到结论;(3)如图2,可分三种情况:当时,当时,当 时分别讨论计算即可【详解】解:如图1,过作于,过作于 ,四边形是平行四边形,的坐标分别为, ,;(2)设点运动秒时,四边形是平行四边形,由题意得:,点是的中点,四边形是平行四边形,即,当秒时,四边形
26、是平行四边形;(3)如图2,当时,过作于 ,则,又,的坐标分别为,,即有,当点与点重合时,;当时,过作于 ,则,;当时,过作于 ,则,;综上所述:当是等腰三角形时,点的坐标为, ,【点睛】本题是四边形综合题,考查了平行四边形的性质,等腰三角形的性质,勾股定理,熟练掌握平行四边形的性质和等腰三角形的性质是解题的关键24(1);(2);(3)存在,【解析】【分析】(1)由于交轴于点,解方程于是得到结论;(2)根据勾股定理得到,得点,设直线解析式为,解解析式为,在直线上,设,即可得到结论;(3)过作于,由解析:(1);(2);(3)存在,【解析】【分析】(1)由于交轴于点,解方程于是得到结论;(2)
27、根据勾股定理得到,得点,设直线解析式为,解解析式为,在直线上,设,即可得到结论;(3)过作于,由全等三角形的性质得,过点作于,过点作推出四边形是矩形,可设,根据全等三角形的性质得到,得根据在直上,根据勾股定理即可得到结论【详解】(1)交轴于点,直线解析式为,令,(2),点,设直线解析式为,直线解析式为,在直线上,可设点,轴,且点在上,(3)过点作于,轴,过点作于,过点作于点,四边形是矩形,可设,是以为斜边的等腰直角三角形,即,在直线上,【点睛】本题考查了待定系数法求函数的解析式,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键25(1
28、)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)先求出CDAADE30,进而解析:(1)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)先求出CDAADE30,进而求出BED90,最后用勾股定理即可得出结论;(3)连接BE,由等腰直角三角形的性质和全等三角形的性质可得BECD,BEACDA45,由勾股定理可得2AC2CD2+CE2【详解】证明:(1)BACDAE,BAC+CAEDAE+CAE,即BAECAD;又ABAC,A
29、DAE,ACDABE(SAS),CDBE;(2)如图,连接BE,ADAE,DAE60,ADE是等边三角形,DEAD3,ADEAED60,CDAE,CDAADE6030,由(1)得ACDABE,BECD5,BEACDA30,BEDBEA+AED30+6090,即BEDE,(3)2AC2CD2+CE2,理由如下:连接BE,ADAE,DAE90,DAED45,由(1)得ACDABE,BECD,BEACDA45,BECBEA+AED45+4590,即BEDE,在RtBEC中,BC2BE2+CE2,在RtABC中,AB2+AC2BC2,2AC2CD2+CE2【点睛】此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键