收藏 分销(赏)

人教版数学八年级下册数学期末试卷易错题(Word版含答案).doc

上传人:w****g 文档编号:1894225 上传时间:2024-05-11 格式:DOC 页数:33 大小:844.54KB
下载 相关 举报
人教版数学八年级下册数学期末试卷易错题(Word版含答案).doc_第1页
第1页 / 共33页
人教版数学八年级下册数学期末试卷易错题(Word版含答案).doc_第2页
第2页 / 共33页
人教版数学八年级下册数学期末试卷易错题(Word版含答案).doc_第3页
第3页 / 共33页
人教版数学八年级下册数学期末试卷易错题(Word版含答案).doc_第4页
第4页 / 共33页
人教版数学八年级下册数学期末试卷易错题(Word版含答案).doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、人教版数学八年级下册数学期末试卷易错题(Word版含答案)一、选择题1二次根式中字母x的取值可以是()Ax0Bx1Cx2Dx52在以下列数值为边长的三角形中,能构成直角三角形的是( )A3.1,4.2,5.3B3.2,4.3,5.4C3.3,4.4,5.5D3.4,4.5,5.63如图,在四边形中,对角线相交于点O,下列条件不能判定这个四边形是平行四边形的是( )ABCD4甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是,则甲、乙两个同学的数学成绩比较稳定的是( )A甲B乙C甲和乙一样D无法确定5如图,在RtABC中,BAC90,AB3,AC4,P为边BC上一动点,PEAB

2、于E,PFAC于F,M为EF的中点,则AM的最小值是()A2.4B2C1.5D1.26如图,在菱形中,对角线、相交于点,于点,若,则的大小为( )A20B35C55D707如图,点P表示的数是1,点A表示的数是2,过点A作直线l垂直于PA,在直线l上取点B,使AB1,以点P为圆心,PB为半径画弧交数轴于点C,则点C所表示的数为( )ABCD8正方形,按如图所示的方式放置,点,和点,分别在直线和轴上则点的纵坐标是( )ABCD二、填空题9若有意义,则的取值范围是_10已知菱形的周长等于8,一条对角线长为2,则此菱形的面积为_11如图 ,在 ABC 中,C90,ABC 的平分线 BD 交 AC 于

3、点 D若 BD10cm,BC8cm,则点 D 到直线 AB 的距离= _12如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O若AE=5,BF=3,则AO的长为_13直线ykx+b的图象如图所示,则代数式2kb的值为 _14如图,在ABC中,点D、E、F分别在边AB、BC、CA上,且DECA,DFBA,下列四种说法:四边形AEDF是平行四边形;如果BAC90,那么四边形AEDF是菱形;如果AD平分BAC,那么四边形AEDF是菱形;如果ABAC,那么四边形AEDF是菱形其中,正确的有_(只填写序号)15如图,在平面直角坐标系中,函数y2x和yx的图象分别为直线l1,l2,

4、过点(1,0)作x轴的垂线交ll于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点作y轴的垂线交l2于点A4,依次进行下去则点A4的坐标为_;点的坐标为_;点A2021的坐标为_16如图,将边沿翻折,使点落在上的点处;再将沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点,则线段的长等于_,线段的长等于_三、解答题17计算题(1)计算: (2)计算:(3)计算: (4)解方程:18如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下

5、次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19如图在的正方形网格中,每个小正方形的顶点称为格点点A,点B都在格点上,按下列要求画图(1)在图中,AB为一边画,使点C在格点上,且是轴对称图形;(2)在图中,AB为一腰画等腰三角形,使点C在格点上;(3)在图中,AB为底边画等腰三角形,使点C在格点上20如图,MNPQ,直线l分别交MN、PQ于点A、C,同旁内角的平分线AB、CB相交于点B,AD、CD相交于点D试证明四边形ABCD是矩形21小明在解决问题:已知a,求2a28a1的值,他是这样分析与解答的:因为a2,所以a2.所以(a2)23,即a24a43.所以a24a1.

6、所以2a28a12(a24a)12(1)11.请你根据小明的分析过程,解决如下问题:(1)计算: = .(2)计算:;(3)若a,求4a28a1的值22黄埔区某游泳馆推出以下两种收费方式方式一:顾客不购买会员卡,每次游泳付费40元方式二:顾客先购买会员卡,每张会员卡800元,仅限本人一年内使用,凭卡游泳,每次游泳再付费20元设你在一年内来此游泳馆游泳的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元)(1)请分别写出y1,y2与x之间的函数表达式;(2)如果你在一年内来此游泳馆游泳的次数超过60次,为省钱,你选择哪种方式?23如图1,在中,为的中点,连结过点作射线为射线

7、上一动点(1)求的长和的面积;(2)如图2,连结,在点的运动过程中,若为等腰三角形,求所有满足条件的的长;(3)如图3,连结交于点,连结,作点关于的对称点,当点恰好落在的边上时,连结,请直接写出的面积24如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(4,0)(1)求直线AB的函数表达式;(2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F的坐标;(3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E

8、不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由25如图1,在中,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E(1)求证:四边形ABCE是平行四边形;(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:M点的坐标为 直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分)26探究:如图,ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P(

9、1)求证:ACNCBM;(2)CPN= ;(给出求解过程)(3)应用:将图的ABC分别改为正方形ABCD和正五边形ABCDE,如图、,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图中CPN= ;(直接写出答案)(4)图中CPN= ;(直接写出答案)(5)拓展:若将图的ABC改为正n边形,其它条件不变,则CPN= (用含n的代数式表示,直接写出答案) 【参考答案】一、选择题1D解析:D【分析】根据二次根式的被开方数是非负数得到,求解即可【详解】解:由题意,得,解得,故可以取,故选:D【点睛】考查了二次根式的意义和性质,解题的关键是掌握概念:式子叫二次根式性质:

10、二次根式中的被开方数必须是非负数,否则二次根式无意义2C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【详解】解:A、3.124.225.32,故不是直角三角形;B、3.224.325.42,故不是直角三角形;C、3.324.425.52,故是直角三角形;D、3.424.525.62,故不是直角三角形故选:C【点睛】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可3C解析:C【解析】【分析】分别利用平行四边形的判定方法和全等三角形的判定与性质进行判断,即可得出结论【详解】解:A、ABCD,ADBC

11、,四边形ABCD是平行四边形,故此选项不符合题意;B、ABDC,DAB+ADC=180,DAB=DCB,DCB+ADC=180,ADBC,四边形ABCD是平行四边形,故此选项不符合题意;C、AO=CO,AB=DC,AOB=COD,不能判定AOBCOD,不能得到OAB=OCD,不能得到ABCD,不能判定四边形ABCD是平行四边形,故此选项符合题意;D、ABDC,OAB=OCD,在AOB和COD中,AOBCOD(AAS),AB=DC,又ABDC,四边形ABCD是平行四边形,故此选项不符合题意;故选:C【点睛】此题主要考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定与性质等知识,正确把

12、握平行四边形的判定方法是解题关键4A解析:A【解析】【分析】平均成绩相同情况下,方差越小越稳定即可求解【详解】解:甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是,甲同学的数学成绩比较稳定故选择A【点睛】本题考查用平均数,方差进行决策,掌握平均数是集中趋势的物理量,方差是离散程度的物理量,方差越小波动越小,方差越大波动越大越不稳定是解题关键5D解析:D【分析】首先连接AP,由在RtABC中,BAC90,PEAB于E,PFAC于F,可证得四边形AEPF是矩形,即可得APEF,即AP2AM,然后由当APBC时,AP最小,即可求得AM的最小值【详解】解:连接AP,PEAB,PFA

13、C,AEPAFP90,又BAC90,四边形AEPF是矩形,APEF,BAC90,M为EF中点,AMEFAP,在RtABC中,BAC90,AB3,AC4,BC5,当APBC时,AP值最小,此时SBAC345AP,解得AP2.4,AP的最小值为2.4,AM的最小值是1.2,故选:D【点睛】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键6C解析:C【解析】【分析】由菱形的性质得ACBD,ABCADC110,ABOABC55,再由直角三角形的性质求出BOE35,即可求解【详解】解:四边形ABCD是菱形,ACBD,ABCADC11

14、0,ABOABC55,OEAB,OEB90,BOE905535,AOE903555,故选:C【点睛】本题考查了菱形的性质、直角三角形的性质等知识;熟练掌握菱形典型在,求出ABO55是解题的关键7D解析:D【解析】【分析】首先在直角三角形中,利用勾股定理可以求出线段PB的长度,然后根据PB=PC即可求出OC的长度,接着可以求出数轴上点C所表示的数【详解】解:,PB=PC,点C的数为,故选:D【点睛】此题主要考查了实数与数轴之间的对应关系,首先正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断8B解析:B【分析】先根据一次函数图象上点的坐标特征及正方形的性质确定点A1,A

15、 2,A3,A4,A5进而确定C1,C 2,C3,C4,C5的坐标并总结出点Cn的纵坐标的规律为2n-1(n为正整数),将n=2030代入即可解答【详解】解:由题意可知,A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8, A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,C1,C2,C3,C4,,C5,Cn的纵坐标分别为1,2,4,8,16,2n-1的纵坐标为22020-1=22019故答案为B【点睛】本题考查了一次函数图像上点的坐标特征、正方形的性质以及找规律,找出Cn点纵坐标的规律为2n-1(n为正整数)是解答本题的关键二、填空题9【解析】【分析】根据被开方数

16、大于或等于0,列式计算即可得解【详解】解:有意义,2x-60,解得x3故答案为:x3【点睛】本题考查二次根式有意义的条件解题的关键是明确二次根式的被开方数是非负数10A解析:cm2【解析】【分析】根据周长先求出边长,由菱形的对角线平分且垂直求出它的另一条对角线的长,再根据面积公式求得面积【详解】解:如图:菱形ABCD的周长等于8cm,AB=84=2cm,ACBD,AO=CO,BO=DO,AC=2,AO=1,BO=,菱形的面积为222=2cm2故答案为:cm2【点睛】本题考查了菱形的四条边相等的性质,以及对角线互相垂直平分的性质,还考查了菱形面积的计算,对角线乘积的一半11D解析:6cm【解析】

17、【分析】过点D作DEAB于E,利用勾股定理列式求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD即可求解【详解】如图,过点D作DEAB于E,C=90,BD=10cm,BC=8cm,CD=cm,C=90,BD是ABC的平分线,DE=CD=6cm,即点D到直线AB的距离是6cm故答案为:6cm【点睛】本题考查了勾股定理、角平分线的性质、点到直线的距离等知识,在解题时要能灵活应用各个知识点是本题的关键12E解析:【分析】根据矩形的性质和平行线的性质可得EFC=AEF,由折叠的性质可得EFC=AFE,从而得到AE=AF=5,由折叠的性质可得BC=BF+FC=3+5=8,根据勾股定理可得AB

18、的长,从而求出AC的长,继而可得到AO的长【详解】解:四边形ABCD为矩形,ADBC,AD=BC,AB=CD,EFC=AEF,由折叠,得EFC=AFE,AEF=AFE,AE=AF=5,由折叠,得FC=AF,OA=OC,BC=BF+FC=3+5=8,在RtABF中,AB=,在RtABC中,AC=,OA=OC=【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,平行线的性质解题的关键是证得AE=AF13-3【分析】将点代入即可求解【详解】解:的图象经过点,故答案为【点睛】本题考查一次函数图象上点的特征,熟练掌握点与一次函数解析式的关系是解题的关键14D解析:【分析】根据平行四边形的判定和菱形的判定

19、解答即可【详解】解:DECA,DFBA,四边形AEDF是平行四边形,故正确;BAC=90,四边形AEDF是平行四边形,四边形AEDF是矩形,故错误;AD平分BAC,四边形AEDF是平行四边形,四边形AEDF是菱形,故正确;AB=AC,四边形AEDF是平行四边形,不能得出AE=AF,故四边形AEDF不一定是菱形,故错误;故答案为:【点睛】此题考查菱形的判定,关键是就平行四边形的判定和菱形的判定解答15(4,4) (8,8) (21010,21011) 【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出解析:(4,4) (8,8

20、) (21010,21011) 【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合6=14+2;2021=5054+1即可找出点A2021的坐标【详解】解:观察,发现规律:A1(1,2),A2(-2,2),A3(-2,-4),A4(4,-4),A5(4,8), “A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1)

21、,A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,6=14+2,A6(8,8)2021=5054+1, A2021的坐标为(21010,21011) 故答案为:(4,4); (8,8);(21010,21011)【点睛】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”16【分析】先依据勾股定理求得AB的长,然后在ABC中,利用面积法可求得C

22、E的长,然后依据勾股定理定理可求得AE的长,证明ECF为等腰直角三角形可求得EF的长,依据FB=AB-A解析: 【分析】先依据勾股定理求得AB的长,然后在ABC中,利用面积法可求得CE的长,然后依据勾股定理定理可求得AE的长,证明ECF为等腰直角三角形可求得EF的长,依据FB=AB-AF求得FB的长即可【详解】解:在RtABC中,AB=10,SABC=ACBC=ABCE,CE=,在AEC中,依据勾股定理得:AE=,由翻折的性质可知ECD=ACD,DCF=DCB,CEAD,ECF=45CEAD,CE=EF=,FB=AB-AE-EF=10-=,故答案为:,【点睛】本题主要考查的是翻折的性质、勾股定

23、理的应用,利用面积法求得CE的长,然后再利用勾股定理和等腰三角形的性质求得AE和EF的长是解答问题的关键三、解答题17(1);(2);(3);(4) 或【分析】(1)先化简二次根式,再计算即可;(2)先化简二次根式,再将除法变成乘法计算即可;(3)先化简二次根式,再将除法变成乘法计算即可;(4)移项,系数解析:(1);(2);(3);(4) 或【分析】(1)先化简二次根式,再计算即可;(2)先化简二次根式,再将除法变成乘法计算即可;(3)先化简二次根式,再将除法变成乘法计算即可;(4)移项,系数化为1,开方即可【详解】(1)解:原式 (2)解:原式 (3)解:原式(4)解: 或【点睛】本题考查

24、课二次根式的混合运算以及解方程,掌握运算法则是解题的关键186【分析】先根据勾股定理求得,进而求得,根据勾股定理即可求得范围【详解】由题意可知,则,即,解得,若下次大风将旗杆从D处吹断,如图,BD,则距离旗杆底部周围6米范围内解析:6【分析】先根据勾股定理求得,进而求得,根据勾股定理即可求得范围【详解】由题意可知,则,即,解得,若下次大风将旗杆从D处吹断,如图,BD,则距离旗杆底部周围6米范围内有被砸伤的危险【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键19(1)见详解;(2)见详解;(3)见详解【解析】【分析】(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB

25、长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股解析:(1)见详解;(2)见详解;(3)见详解【解析】【分析】(1)先根据以AB为边ABC是轴对称图形,得出ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC=,利用平移作出点C即可【详解】解:(1)以AB为边ABC是轴对称图形,ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点ABC如图也可画以AB为直角边,点A为直角顶点ABC如图;(2)根据勾股定理AB=,AB为一腰画等腰三角形,另一腰为,以点A为顶角顶

26、点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰ABC3, 点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰ABC6; (3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理,即,解得,根据勾股定理AC=,横1竖2,或横2竖1得图形,点A向右平

27、移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键20见解析【分析】首先推出BAC=DCA,继而推出ABCD;推出BCA=DAC,进而推出ADCB,因此四边形ABCD平行四边形,再证明ABC=90,可得平行四边形ABCD是矩形【解析:见解析【分析】首先推出BAC=DCA,继而推出ABCD;推出BCA=DAC,进而推出ADCB

28、,因此四边形ABCD平行四边形,再证明ABC=90,可得平行四边形ABCD是矩形【详解】证明:MNPQ,MAC=ACQ, ACP=NAC,MAC+ACP=1800,AB、CD分别平分MAC和ACQ,BAC=MAC,DCA=ACQ,又MAC=ACQ,BAC=DCA,ABCD,AD、CB分别平分ACP和NAC,BCA=ACP,DAC=NAC,又ACP=NAC,BCA=DAC,ADCB,四边形ABCD是平行四边形,BAC=MAC,BCA=ACP,MAC+ACP=180,BAC+BCA=90,ABC=90,四边形ABCD是矩形【点睛】本题主要考查了矩形的判定,关键是掌握有一个角是直角的平行四边形是矩形

29、21(1) ,1;(2) 9;(3) 5【解析】【分析】(1);(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解析:(1) ,1;(2) 9;(3) 5【解析】【分析】(1);(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简,然后把所求的式子化成代入求解即可.【详解】(1)计算: ;(2)原式;(3),则原式,当时,原式.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22(1)y1=4

30、0x,y2=20x+800;(2)在一年内来此游泳馆游泳的次数超过60次,为省钱,应选择方式二【分析】(1)根据题意可以写出y1,y2与x之间的函数表达式;(2)将x=15代入(解析:(1)y1=40x,y2=20x+800;(2)在一年内来此游泳馆游泳的次数超过60次,为省钱,应选择方式二【分析】(1)根据题意可以写出y1,y2与x之间的函数表达式;(2)将x=15代入(1)中函数关系式,求出相应的函数值,然后比较大小即可解答本题【详解】解:(1)当游泳次数为x时,方式一费用为:y1=40x,方式二的费用为:y2=20x+800;(2)若一年内来此游泳馆游泳的次数为60次,方式一的费用为:y

31、1=4060=2400(元),方式二的费用为:y2=2060+800=2000(元),24002000,在一年内来此游泳馆游泳的次数超过60次,为省钱,应选择方式二【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,求出y1,y2与x之间的函数表达式,利用一次函数的性质解答23(1)20,150;(2)7或;(3)或42【分析】(1)根据等腰三角形的性质可得BD=AB=15,CDAB,根据勾股定理即可求得的长,从而可得的面积;(2)分三种情况进行讨论;当CD=C解析:(1)20,150;(2)7或;(3)或42【分析】(1)根据等腰三角形的性质可得BD=AB=15,CDAB,根据勾股定理

32、即可求得的长,从而可得的面积;(2)分三种情况进行讨论;当CD=CP时,作CEAP于E,根据SABC=ABCD=BCCE可得CE的长,CECP,而根据直角三角形斜边大于直角边可得该情况不成立;当CD=DP时,作DFAP于F,延长FD交BC于G,根据全等三角形的判定可得AFDBGD,从而得到DF=DG,根据SCDB=CDBD=DGBC,可得DF=DG=12,根据勾股定理可得AF和PF的长,即可得到AP的长;当PD=PC时,作CEAP于E,作DFAP于F,延长FD交BC于G,设AP=x,可得PE=x-7,根据勾股定理可得,列式即可求得AP的值(3)分三种情况进行讨论:当A落在CD上时,作GECD于

33、点E,根据等腰三角形的性质可得CDAB,可得sinDAC=,cosDAC=,根据题意可知DG是AA的垂直平分线,从而得到ADGADG(SAS),AC=5,即可得到sinGAE= sinGAE=,cosGAE=cosGAE=,设AG=x,则CG=25-x,GE=x,AE=x,可得CE=x+5,利用勾股定理可得GE的长,根据SACG=ACEG即可得解;当A落在BC上时,作GEBC于点E,AA与DG的交点为F,可得DF为中位线,所以DFBA,且DF=BA,根据等腰三角形性质及中位线性质可得sinABA=,cosABA=,从而求得BA的长,BA的长,根据矩形的判定可得四边形FAEG为矩形,从而得到GE

34、的长,根据SACG=ACEG即可得解;当A落在BD上时,会得到A与B点重合,所以该情况不存在【详解】解:(1),D为的中点,BD=AB=15,CDAB,CDB=90,CD=,SACD=CDAD=2015=150;(2)当CD=CP时,如图,作CEAP于E,SABC=ABCD=BCCE,3020=25CE,解得 CE=24,CECD,即CECP,CD=CP不成立,当CD=DP时,作DFAP于F,延长FD交BC于G,AFBC,FAD=B,AFD=BGD=90,AD=BD,AFDBGD(AAS),DF=DG,SCDB=CDBD=DGBC,2015=25DGDF=DG=12,AF=,在RtDFP中,P

35、F=,AP=PF-AF=16-9=7,当PD=PC时,作CEAP于E,作DFAP于F,延长FD交BC于G,由上述过程可得 AF=9,CG=BC-BG=25-9=16,设AP=x,PE=PF-FE=AF+AP-FE=9+x-16=x-7,当PD=PC时,在RtPDF中,在RtPCE中,=,解得x=,AP=,综上所述,AP=7或(3)当A落在CD上时,作GECD于点E,则SACG=ACEG,AC=BC,D为AB中点,CDAB,AC=BC=25,AB=30,BD=AD=15,CD=20,sinDAC=,cosDAC=,由题知A,A关于DG对称,DG是AA的垂直平分线,DG=DG,ADG=ADG,AD

36、=AD=15,ADGADG(SAS),AC=5,sinGAE= sinGAE=,cosGAE=cosGAE=,设AG=x,则CG=25-x,GE=x,AE=x,CE=x+5,CGE为直角三角形,解得x=,GE=,SACG=ACEG=5=;当A落在BC上时,作GEBC于点E,AA与DG的交点为F,则SACG=ACEG,A,A关于DG对称,点F为AA的中点,D为AB的中点,则在ABA中,DF为中位线,DFBA,且DF=BA,AFD=90,AAB=90,CD=20,BC=25,AB=30sinABA=,cosABA=,BA=30=24,AC=25-18=7,AABC,GEBC,GEAA,DFBA,F

37、GAE,AAC=90,四边形FAEG为矩形,GE=FA=AA=24=12,SACG=ACEG=712=42当A落在BD上时,此时DA=DA=15,A与B点重合,AP BC,该情况不存在,综上所述,的面积为或42【点睛】本题考查了等腰三角形的性质,勾股定理,全等三角形的判定与性质,矩形的判定与性质等知识点解题的关键是运用分类讨论思想进行解题24(1);(2);(3)或或【解析】【分析】(1)直接利用待定系数法,即可得出结论;(2)先求出AD3,AB5,进而求出点D的坐标,再构造出BMFFND,得出BMFN,FMDN,解析:(1);(2);(3)或或【解析】【分析】(1)直接利用待定系数法,即可得

38、出结论;(2)先求出AD3,AB5,进而求出点D的坐标,再构造出BMFFND,得出BMFN,FMDN,设F(m,n),进而建立方程组求解,即可得出结论;(3)分两种情况,当时,利用中点坐标公式求解,即可得出结论;当时,当点E在AB上方时,根据AEBC,即可得出结论;当点E在AB下方时,过点作轴于,过点作轴,过点作,证明,即可得出结论【详解】(1)设直线的函数表达式为,直线AB交y轴于点A(0,3),交x轴于点B(4,0),直线的函数表达式为;(2)如图,过点分别引轴的垂线,交轴于两点, 点A(0,3),点B(-4,0),OA=3,OB=4,AB=5,由折叠知,AD=OA=3,设,解得:在上,解

39、得,过点F作FMx轴于M,延长HD交FM于N,BMF=FND=90,BFM+FBM=90,BFD是等腰直角三角形,BF=DF,BFD=90,BFM+DFN=90,FBM=DFN,BMFFND(AAS),BM=FN,FM=DN,设F(m,n),则;(3)设OC=a,则BC=4-a,由折叠知,BDC=ADC=AOC=90,CD=OC=a,在RtBDC中,a=,点A,B,E为顶点的三角形与ABC全等,当ABCABE时,BE=BC,ABC=ABE,连接CE交AB于D,则CD=ED,CDAB,由(1)知, 设E(b,c),;当ABCBAE时,当点E在AB上方时,AC=BE,BC=AE,AEBC,;当点E

40、在AB下方时,AC=BE,BC=AE,当时,,,过点作轴于,过点作轴,过点作,,,即,点,,=,满足条件的点E的坐标为或或【点睛】本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键25(1)见解析;(2),;(3);【分析】(1)利用直角三角形斜边中线的性质可得DO=DA,推出AEO=60,进一步得出BCAE,COAB,可得结论;(2)先计算出OA=,推出PB=解析:(1)见解析;(2),;(3);【分析】(1)利用直角三角形斜边中线的性质可得DO=DA,推出AEO=60,进一步得出BCAE,COAB,可得结论;(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;(3)求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算【详解】(1)证明:RtOAB中,D为OB的中点,AD=OB,OD=BD=OB,DO=DA,DAO=DOA=30,EOA=90,AEO=60,又OBC为等边三角形,BCO=AEO=60,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服