资源描述
2022年人教版中学七7年级下册数学期末复习试卷(含答案)
一、选择题
1.实数4的算术平方根是()
A. B.2 C. D.16
2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点(3,-3)所在的象限是( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中:
①若,则点在原点处;
②点一定在第四象限
③已知点与点,m,n均不为0,则直线平行x轴;
④已知点A(2,-3),轴,且,则B点的坐标为(2,2).
以上命题是真命题的有( )
A.1个 B.2个 C.3个 D.4个
5.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,,则∠E的度数是( )
A.30° B.40° C.60° D.70°
6.小雪在作业本上做了四道题目:①=﹣3;②±=4;③=9;④=-6,她做对了的题目有( )
A.1道 B.2道 C.3道 D.4道
7.如图,中,平分,于点,,,则的度数为( )
A.134° B.124° C.114° D.104°
8.如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、、、…的位置上,则点的坐标为( ).
A. B. C. D.
九、填空题
9.计算_______________.
十、填空题
10.已知点与点关于轴对称,那么点关于轴的对称点的坐标为__________.
十一、填空题
11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____.
十二、填空题
12.如图,,,,则∠CAD的度数为____________.
十三、填空题
13.将一张长方形纸条折成如图的形状,已知,则___________°.
十四、填空题
14.阅读下列解题过程:
计算:
解:设①
则②
由②-①得,
运用所学到的方法计算:______________.
十五、填空题
15.在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是____.
十六、填空题
16.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,…,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中x的值
(1)81x2 =16
(2)
十九、解答题
19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
二十、解答题
20.如图,在平面直角坐标系中,已知P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).
(1)请画出上述平移后的△A1B1C1,并写出点A1,C1的坐标;
(2)写出平移的过程;
(3)求出以A,C,A1,C1为顶点的四边形的面积.
二十一、解答题
21.已知a是的整数部分,b是的小数部分.
(1)求a,b的值;
(2)求的平方根.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
二十四、解答题
24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC.
(1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= .
(2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行线的性质说明理由.
(3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分∠ABC交AD于E点,OF平分∠BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.
二十五、解答题
25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;
①若∠B=90°则∠F= ;
②若∠B=a,求∠F的度数(用a表示);
(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.
【详解】
解:∵22=4,
∴4的算术平方根是2.
故选B.
【点睛】
本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.
2.D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都不是由平移得到的,D是由平移得到的.
故选:D.
【点睛】
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都不是由平移得到的,D是由平移得到的.
故选:D.
【点睛】
本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.D
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
点(3,-3)的横坐标为正数,纵坐标为负数,
所以点(3,-3)所在的象限是第四象限,
故选D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断.
【详解】
解:若,则或,所以点坐标轴上,所以①为假命题;
,点一定在第四象限,所以②为真命题;
已知点与点,,均不为0,则直线平行轴,所以③为真命题;
已知点,轴,且,则点的坐标为或,所以④为假命题.
故选:B.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
5.A
【分析】
过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性质可得,然后根据角的和差即可得.
【详解】
解:如图,过点作,
,
,
,
,
,
,
,
,
故选:A.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.
6.A
【分析】
依据立方根、平方根算术平方根的定义求解即可
【详解】
①=-3,故①正确;②±=±4,故②错误;
=3,故③错误;④=6,故④错误.
故选:A.
【点睛】
此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键
7.B
【分析】
已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.
【详解】
解:∵AE平分∠BAC,
∴∠BAE=∠CAE=34°,
∵ED∥AC,
∴∠CAE+∠AED=180°,
∴∠DEA=180°-34°=146°,
∵BE⊥AE,
∴∠AEB=90°,
∵∠AEB+∠BED+∠AED=360°,
∴∠BED=360°-146°-90°=124°,
故选:B.
【点睛】
本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.
8.D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化
解析:D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位.
九、填空题
9.11
【分析】
直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案.
【详解】
解:原式=2+9
=11.
故答案为:11.
【点睛】
此题主要考查了算术平方根以及有理数的乘方运算,正
解析:11
【分析】
直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案.
【详解】
解:原式=2+9
=11.
故答案为:11.
【点睛】
此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键.
十、填空题
10.【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣
解析:
【分析】
先将a,b求出来,再根据对称性求出坐标即可.
【详解】
根据题意可得:﹣3=b,2a-1=3.解得a=2,b=﹣3.
P(2,﹣3)关于y轴对称的点(﹣2,﹣3)
故答案为: (﹣2,﹣3).
【点睛】
本题考查了关于坐标轴对称的点的坐标特征,熟练掌握是解题的关键.
十一、填空题
11.6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌
解析:6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌△ADH,△DEF≌△DGH,
设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6.
∴△EDF的面积为6.
十二、填空题
12.【分析】
根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.
【详解】
解:∵∥,,
∴,
∴
故答案为:
【点睛】
本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是
解析:
【分析】
根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.
【详解】
解:∵∥,,
∴,
∴
故答案为:
【点睛】
本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.
十三、填空题
13.55
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,∵ABCD,
∴∠1=∠BAD=110°,
由折叠可得,∠2=∠BAD=×110°=55°,
故答案为:
解析:55
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,∵ABCD,
∴∠1=∠BAD=110°,
由折叠可得,∠2=∠BAD=×110°=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14..
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的
解析:.
【分析】
设S=,等号两边都乘以5可解决.
【详解】
解:设S=①
则5S=②
②-①得4S=,
所以S=.
故答案是:.
【点睛】
本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决.
十五、填空题
15.或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点
解析:或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点B的坐标为或.
故答案为:或.
【点睛】
本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键.
十六、填空题
16.【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:
【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;
从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;
依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,
可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,
∵20×20=400
∴第421秒时这个点所在位置的坐标为(19,20),
故答案为:(19,20).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.
十七、解答题
17.(1) 3;(2) 2
【解析】
【分析】
(1)原式利用平方根及立方根的定义化简,计算即可得到结果;
(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.
【详解】
解:(1
解析:(1) 3;(2) 2
【解析】
【分析】
(1)原式利用平方根及立方根的定义化简,计算即可得到结果;
(2)原式第一项利用绝对值的代数意义化简,第二项去括号,合并即可得到结果.
【详解】
解:(1)原式=-(2-4)÷6+3
=+ +3
=3;
(2)原式=
= .
故答案为:(1)3;(2) .
【点睛】
本题考查实数的运算,熟练掌握运算法则是解题的关键.
十八、解答题
18.(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
解析:(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
【点睛】
本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法.
十九、解答题
19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁
解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
二十、解答题
20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14.
【分析】
(1)根据点P的对应点P1(a+6,b+2)可分别
解析:(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14.
【分析】
(1)根据点P的对应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象;
(2)由(1)可直接进行求解;
(3)由(1)的图象可直接利用割补法进行求解面积.
【详解】
解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象:
∴由图象可得;
(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度;
(3)连接,如图所示:
∵点,
∴点在同一条直线上,且与x轴平行,
∴.
【点睛】
本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键.
二十一、解答题
21.(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b
解析:(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b=;
(2)
=
=
∴的平方根为±3.
【点睛】
此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
二十四、解答题
24.(1);(2),见解析;(3)不变,
【分析】
(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;
(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系;
(3)运用
解析:(1);(2),见解析;(3)不变,
【分析】
(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;
(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系;
(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论.
【详解】
(1)因为∥,
所以,
因为∠BCD=73 °,
所以,
故答案为:
(2),
如图②,过点作∥,
则,.
因为,
所以,
(3)不变,
设,
因为平分,
所以.
由(2)的结论可知,且,
则:.
因为∥,
所以,
因为平分,
所以.
因为∥,
所以,
所以.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.
二十五、解答题
25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC
解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;
(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.
【详解】
解:(1)①∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,
故答案为45°;
②∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;
(2)由(1)可得,∠F=∠ABC,
∵∠AGB与∠GAB的角平分线交于点H,
∴∠AGH=∠AGB,∠GAH=∠GAB,
∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,
∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,
∴∠F+∠H的值不变,是定值180°.
【点睛】
本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.
展开阅读全文