资源描述
八年级期末试卷易错题(Word版含答案)
一、选择题
1.已知是整数,则正整数n的最小值是( )
A.2 B.4 C.6 D.8
2.以下列各数为边长,能构成直角三角形的是( )
A.5,11,12 B.9,15,17 C.1,,2 D.,,
3.下列说法中错误的是( )
A.两条对角线互相垂直且平分的四边形是菱形
B.两条对角线相等的四边形是矩形
C.两条对角线互相垂直、平分且相等的四边形是正方形
D.两条对角线互相平分的四边形是平行四边形
4.小华同学所在的801班共有50名学生,省级健康抽测测量了全班学生的身高,小华的身高是1.65米,他通过计算发现该班学生的平均身高也是1.65米,下列说法正确的是( )
A.该班至少有25位同学的身高超过1.65米
B.1.65米是该班学生身高的一般水平
C.该班学生身高的中位数是1.65米
D.该班学生身高出现次数最多的是1.65米
5.如图所示,正方形ABCD的边长为4,点E为线段BC上一动点,连结AE,将AE绕点E顺时针旋转90°至EF,连结BF,取BF的中点M,若点E从点B运动至点C,则点M经过的路径长为( )
A.2 B. C. D.4
6.如图,菱形中,,则( )
A.60° B.30° C.25° D.15°
7.如图,▱ABCD的对角线AC,BD交于点O,BD⊥DC,BE⊥AC,垂足为E,若∠COD=60°,AE=,则▱ABCD的面积为( )
A. B. C.2 D.
8.甲、乙两位同学住在同一小区,学校与小区相距2700米.一天甲从小区步行出发去学校,12分钟后乙也出发,乙先骑公交自行车,途经学校又骑行一段路到达还车点后,立即步行走回学校.已知步行速度甲比乙每分钟快5米,图中的折线表示甲、乙两人之间的距离y(米)与甲步行时间x(分钟)的函数关系图象.则( )
A.乙骑自行车的速度是180米/分 B.乙到还车点时,甲,乙两人相距850米
C.自行车还车点距离学校300米 D.乙到学校时,甲距离学校200米
二、填空题
9.若代数式有意义,则的取值范围__________.
10.已知菱形ABCD的两条对角线分别长6和8,则它的面积是_____.
11.如图,以的两条直角边和斜边为边长分别作正方形,其中正方形、正方形的面积分别为25、144,则阴影部分的面积为______.
12.如图,已知长方形纸片,,,若将纸片沿折叠,点落在,则重叠部分的面积为______.
13.若一次函数(为常数)的图象经过点(,9),则____.
14.如图,已知四边形ABCD是平行四边形,请你添加一个条件使它成为菱形.这个条件为_____.
15.正方形,,,…按如下图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,已知正方形的边长为,正方形边长为,则的坐标是______.
16.一条笔直的公路上顺次有三地,小军早晨从地出发沿这条公路骑自行车前往地,同时小林从地出发沿这条公路骑摩托车前往地,小林到地后休息了 个小时, 然后掉头原路原速返回追赶小军,经过一段时间后两人同时到达地,设两人行驶的时间为 (小时),两人之间的距离为 (千米), 与之间的函数图像如图所示,下列说法:①小林与小军的速度之比为;②时,小林到达地;③时,小林与小军同时到达C地;④两地相距千米,其中正确的有_________(只填序号)
三、解答题
17.计算:
(1)2×﹣;
(2)÷﹣×+.
18.笔直的河流一侧有一营地C,河边有两个漂流点A,B、其中AB=AC,由于周边施工,由C到A的路现在已经不通,为方便游客,在河边新建一个漂流点H(A,H,B在同一直线上),并新修一条路CH,测得BC=10千米,CH=8千米,BH=6千米.
(1)判断△BCH的形状,并说明理由;
(2)求原路线AC的长.
19.作图题
(1)填空:如果长方形的长为3,宽为2,那么对角线的长为_________.
(2)如下图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).
①在图1中,分别画三条线段AB、CD、EF,使AB=、CD=、EF=.
②在图2中,画三角形ABC,使AB=3、BC=、CA=.
③在图3中,画平行四边形ABCD,使,且面积为6.
20.如图,菱形ABCD的对角线AC和BD交于点O,点E在线段OB上(不与点B,点O重合),点F在线段OD上,且DF=BE,连接AE,AF,CE,CF.
(1)求证:四边形AECF是菱形;
(2)若AC=4,BD=8,当BE=3时,判断△ADE的形状,说明理由.
21.阅读理解:把分母中的根号化去叫做分母有理化,例如:①==;②===.等运算都是分母有理化,根据上述材料,
(1)化简:;
(2)+++…+.
22.已知某列货车挂有A,B两种不同规格的货车厢共60节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元,设使用该列车全部车厢的总费用为y万元,这列货车挂A型车厢x节.
(1)试写出y与x之间的函数关系式;
(2)若使用该列车全部车厢的总费用少于45万元,则至少挂A型车厢多少节?
23.图1,在正方形中,,为线段上一点,连接,过点作,交于点.将沿所在直线对折得到,延长交于点.
(1)求证:.
(2)若,求的长.
(3)如图2,延长交的延长线于点,若,记的面积为,求与之间的函数关系式.
24.如图,已知直线AB的函数解析式为,与y轴交于点A,与x轴交于点B.点P为线段AB上的一个动点(点P不与A,B重合),连接OP,以PB,PO为邻边作▱OPBC.设点P的横坐标为m,▱OPBC的面积为S.
(1)点A的坐标为 ,点B的坐标为 ;
(2)①当▱OPBC为菱形时,S= ;
②求S与m的函数关系式,并写出m的取值范围;
(3)BC边的最小值为 .
25.某数学活动小组在一次活动中,对一个数学问题作如下研究:
(1)如图1,△ABC中分别以AB,AC为边向外作等腰△ABE和等腰△ACD使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.
(2)如图2,△ABC中分别以AB,AC为边向外作等腰Rt△ABE和等腰Rt△ACD,∠EAB=∠CAD=90°,连接BD,CE,若AB=4,BC=2,∠ABC=45゜,求BD的长.
(3)如图3,四边形ABCD中,连接AC,CD=BC,∠BCD=60°,∠BAD=30°,AB=15,AC=25,求AD的长.
【参考答案】
一、选择题
1.C
解析:C
【分析】
因为是整数,且,则6n是完全平方数,满足条件的最小正整数n为6.
【详解】
解:,且是整数,
∴是整数,即6n是完全平方数;
∴n的最小正整数值为6.
故选:C.
【点睛】
本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答
2.C
解析:C
【分析】
以两个较小数为两个直角边的边长,较大数为斜边的边长,验证四个选项是否满足勾股定理的逆定理即可.
【详解】
解:A选项,,故A选项不符合题意;
B选项, ,故B选项不符合题意;
C选项, ,故C选项符合题意;
D选项, ,故D选项不符合题意.
故选C.
【点睛】
本题考查了勾股定理的逆定理,熟练掌握以上知识点是解题关键.
3.B
解析:B
【解析】
【分析】
根据平行四边形,菱形,矩形,正方形的判定定理逐项分析即可
【详解】
A. 两条对角线互相垂直且平分的四边形是菱形,故该选项正确,不符合题意;
B. 两条对角线相等且平分的四边形是矩形,故该选项不正确,符合题意;
C. 两条对角线互相垂直、平分且相等的四边形是正方形,故该选项正确,不符合题意;
D. 两条对角线互相平分的四边形是平行四边形,故该选项正确,不符合题意;
故选B
【点睛】
本题考查了平行四边形,菱形,矩形,正方形的判定定理,掌握以上定理是解题的关键.
4.B
解析:B
【解析】
【分析】
根据中位数、众数及算术平均数的定义,结合各选项进行判断即可.
【详解】
解:A、该班不一定有25位同学的身高超过1.65米,说法错误,故本选项不符合题意;
B、1.65米是该班学生身高的一般水平,说法正确,故本选项符合题意;
C、该班学生身高的中位数不一定是1.65米,说法错误,故本选项不符合题意;
D、该班学生身高出现次数最多的不能确定,说法错误,故本选项不符合题意;
故选:B.
【点睛】
本题考查了众数、中位数及平均数的知识,属于基础题,掌握基本定义是关键.
5.B
解析:B
【分析】
已知EF⊥AE,当E点在线段BC上运动到两端时,正好是M点运动的两个端点,由此可以判断M点的运动轨迹是BC、CD中点的连线长.
【详解】
解:取BC、CD的中点G、H,连接GH,连接BD
∴GH为△BCD的中位线,即
∵将AE绕点E顺时针旋转90°至EF,
∴EF⊥AE,
当E点在B处时,M点在BC的中点G处,当E点在C点处时,M点在CD中点处,
∴点M经过的路径长为GH的长,
∵正方形ABCD的边长为4,
∴
∴,
故选B.
【点睛】
本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M点的运动轨迹.
6.B
解析:B
【解析】
【分析】
由菱形的性质可得AB=BC,∠B=∠D=120°,由菱形的性质可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AB=BC,∠B=∠D=120°,
∴∠1=30°,
故选:B
【点睛】
本题考查了菱形的性质,等腰三角形的性质,掌握菱形的性质是本题的关键.
7.A
解析:A
【解析】
【分析】
根据题意分别求得线段AB和线段BD的长,利用底乘高求得平行四边形的面积即可.
【详解】
解:∵平行四边形ABCD中,BD⊥DC,∠COD=60°,
∴∠DCO=30°,AB//CD,OB=OD
∴∠BAE=∠DCO=30°,
∴AB=2BE,
∵AE=,,
∴BE=1,
∵BE⊥AC,
∴AB=2BE=2,
在Rt△ABO中,AO=2BO,AB=2,
同理利用勾股定理求得OB=,
∴BD=2OB=2×=,
∴▱ABCD的面积为AB•BD=2×=,
故选:A.
【点睛】
本题考查了平行的四边形的性质,含30°角的直角三角形的性质,勾股定理,了解含30°角的直角三角形的性质是解答本题的关键.
8.C
解析:C
【分析】
根据函数图象中的数据可以求得甲步行的速度、乙骑自行车的速度、乙一共所用的时间,从而得出乙步行的速度、自行车还车点与学校的距离,求出乙到还车点时,甲、乙所用的时间,即可得出路程差,根据乙到学校时,所用时间为19分,此时甲所用的时间为31分,则可求出甲距学校的路程.
【详解】
由图可得:
甲步行的速度为:960÷12=80(米/分),
乙骑自行车的速度为:[960+(20-12)×80]÷(20-12)=200(米/分),故A错误;
乙步行的速度为:80-5=75(米/分)
乙一共所用的时间:31-12=19(分)
设自行车还车点距学校x米,则:
解得:x=300.
故C正确;
乙到还车点时,乙所用时间为:(2700+300)÷200=15(分)
乙到还车点时,甲所用时间为:12+15=27(分)
路程差=2700+300-80×27=840(米),故B错误;
乙到学校时,所用时间为19分,而甲所用的时间=12+19=31(分),甲距学校的路程=2700-80×31=220(米),故D错误.
故选C.
【点睛】
本题考查了根据函数图象获取信息,解答本题的关键是明确题意,利用数形结合的思想解答.
二、填空题
9.
【解析】
【分析】
由代数式有意义可得且 从而可得答案.
【详解】
解: 代数式有意义,
且
且
所以:>
故答案为:>
【点睛】
本题考查的是二次根式有意义的条件,分式有意义的条件,利用二次根式与分式有意义列不等式组是解题的关键.
10.24
【解析】
【详解】
试题分析:本题直接根据菱形面积等于两条对角线的长度的乘积的一半进行计算.S=6×8÷2=24.
考点:菱形的性质.
11.B
解析:139
【解析】
【分析】
根据勾股定理可得正方形BCMN的面积为25+144=169,再求出Rt△ABC的面积,即可求解.
【详解】
如图,∵正方形、正方形的面积分别为25、144,
∴正方形BCMN的面积为25+144=169,AB=5,AC=12
∴阴影部分的面积为169-×5×12=169-30=139
故答案为:139.
【点睛】
此题主要考查勾股定理,解题的关键是熟知勾股定理几何证明方法.
12.A
解析:40
【分析】
先说明△AFD′≌△CFB可得BF=D′F,设D′F=x,在Rt△AFD′中根据勾股定理求得x,再根据AF=AB−BF求得AF,由BC为AF边上的高,最后根据三角形的面积公式求解即可.
【详解】
解:由于折叠可得:AD′=BC,∠D′=∠B,
又∵∠AFD′=∠CFB,
∴△AFD′≌△CFB(AAS),
∴D′F=BF,
设D′F=x,则AF=16−x,
在Rt△AFD′中,(16−x)2=x2+82,解得:x=6,
∴AF=AB−FB=16−6=10,
∴S△AFC=•AF•BC=×10×8=40.
故填40.
【点睛】
本题考查了勾股定理的正确运用,在直角三角形AFD′中运用勾股定理求出BF的长是解答本题的关键.
13.3
【分析】
把点(,9)代入函数解析式,即可求解.
【详解】
∵一次函数(为常数)的图象经过点(,9),
∴,解得:b=3,
故答案是:3.
【点睛】
本题主要考查一次函数图象上的点的坐标特征,掌握待定系数法,是解题的关键.
14.A
解析:AB=BC(答案不唯一)
【分析】
因为四边形ABCD是平行四边形,所以可添加条件为:邻边相等;对角线互相垂直.
【详解】
添加AB=BC,根据“有一组邻边相等的平行四边形是菱形”可使它成为菱形.
故填:AB=BC.
【点睛】
本题考查菱形的判定,以平行四边形为基础,按照菱形判定定理解题即可.
15.(63,64)
【分析】
由题意易得,然后把点的坐标代入直线求解,进而可得点,,…..;由此可得规律为,最后问题可求解.
【详解】
解:∵四边形,是正方形,且正方形的边长为,正方形边长为,
∴,
∴
解析:(63,64)
【分析】
由题意易得,然后把点的坐标代入直线求解,进而可得点,,…..;由此可得规律为,最后问题可求解.
【详解】
解:∵四边形,是正方形,且正方形的边长为,正方形边长为,
∴,
∴,,
∵点….在直线上,
∴把点的坐标代入得:,解得:,
∴直线,
当x=3时,则有,
∴,
同理可得,
∵,…..;
∴,
∴;
故答案为.
【点睛】
本题主要考查正方形的性质及一次函数的应用,熟练掌握正方形的性质及一次函数的图象与性质是解题的关键.
16.②④
【分析】
根据第一段图像可求得两人的速度和,结合第二段图像可求得小林的速度,进而可得小军的速度,由此可判断①;根据“时间=路程÷速度”可判断②;根据“时间=路程差÷速度差”可判断③、④.
【详
解析:②④
【分析】
根据第一段图像可求得两人的速度和,结合第二段图像可求得小林的速度,进而可得小军的速度,由此可判断①;根据“时间=路程÷速度”可判断②;根据“时间=路程差÷速度差”可判断③、④.
【详解】
解:由题意可得v林+v军=300÷3=100(千米/小时)
200÷100=2(小时)
则v林=300÷(2+3)=60(千米/小时)
v军=100-60=40(千米/小时)
∴v林:v军=60:40=3:2,
∴①错误;
∵300÷60=5(小时)
5+5=10,
∴②正确;
∵40×(3+2+1)=240(千米)
240÷(60-40)=12(小时)
5+3+2+1+12=23
∴小林和小军在23:00到达C地,
∴③错误;
∵12×60-300=420,
∴④正确.
故答案为:②④.
【点睛】
本题考查了一次函数的应用,理解函数图象上点的实际意义是解决本题的关键.
三、解答题
17.(1);(2)
【分析】
(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;
(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.
【详解】
解:(1)
解析:(1);(2)
【分析】
(1)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可;
(2)先利用二次根式的性质化简,然后根据二次根式的混合计算法则求解即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了利用二次根式的化简和二次根式的混合运算,熟练掌握相关计算法则是解题的关键.
18.(1)△HBC是直角三角形,理由见解析;(2)原来的路线AC的长为千米.
【分析】
(1)根据勾股定理的逆定理解答即可;
(2)根据勾股定理解答即可.
【详解】
解:(1)△BCH是直角三角形,
理
解析:(1)△HBC是直角三角形,理由见解析;(2)原来的路线AC的长为千米.
【分析】
(1)根据勾股定理的逆定理解答即可;
(2)根据勾股定理解答即可.
【详解】
解:(1)△BCH是直角三角形,
理由是:在△CHB中,
∵CH2+BH2=82+62=100,
BC2=100,
∴CH2+BH2=BC2,
∴△HBC是直角三角形且∠CHB=90°;
(2)设AC=AB=x千米,则AH=AB-BH=(x-6)千米,
在Rt△ACH中,由已知得AC=x,AH=x-6,CH=8,
由勾股定理得:AC2=AH2+CH2,
∴x2=(x-6)2+82,
解这个方程,得x=,
答:原来的路线AC的长为千米.
【点睛】
本题考查了勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理.
19.(1);(2)①见解析;②见解析;③见解析
【解析】
【分析】
(1)根据勾股定理计算即可;
(2)答案不唯一,根据勾股定理计算画出即可.
【详解】
(1)∵长方形的长为3,宽为2,
∴对角线的长为
解析:(1);(2)①见解析;②见解析;③见解析
【解析】
【分析】
(1)根据勾股定理计算即可;
(2)答案不唯一,根据勾股定理计算画出即可.
【详解】
(1)∵长方形的长为3,宽为2,
∴对角线的长为,
故答案为:;
(2)只要画图正确可(不唯一)
①三条线段AB、CD、EF如图1所示:
②三角形ABC如图2所示:
③平行四边形ABCD如图3 所示:
.
【点睛】
本题考查了勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定与性质是解题的关键.
20.(1)见解析;(2)直角三角形,理由见解析
【分析】
(1)根据菱形的性质得出AC⊥BD,AO=CO,BO=DO,求出OE=OF,再根据菱形的判定得出即可;
(2)根据菱形的性质求出AO=2,BO=
解析:(1)见解析;(2)直角三角形,理由见解析
【分析】
(1)根据菱形的性质得出AC⊥BD,AO=CO,BO=DO,求出OE=OF,再根据菱形的判定得出即可;
(2)根据菱形的性质求出AO=2,BO=DO=4,求出OE和DE,根据勾股定理求出AD2=20,AE2=5,求出AD2+AE2=DE2,再根据勾股定理的逆定理求出答案即可.
【详解】
解:(1)证明:∵四边形ABCD是菱形,
∴AC⊥BC,AO=CO,BO=DO,
∵BE=DF,BO=DO,
∴BO﹣BE=DO﹣DF,
即OE=OF,
∵AO=CO,
∴四边形AECF是平行四边形,
∵AC⊥BD,
∴四边形AECF是菱形;
(2)解:△ADE是直角三角形,
理由是:∵AC=4,BD=8,AO=CO,BO=DO,
∴AO=2,BO=DO=4,
∵BE=3,
∴OE=4﹣3=1,DE=DO+OE=4+1=5,
在Rt△AOD中,由勾股定理得:AD2=AO2+DO2=22+42=20,
在Rt△AOE中,由勾股定理得:AE2=AO2+OE2=22+12=5,
∵DE2=52=25,
∴AD2+AE2=DE2,
∴∠DAE=90°,
即△ADE是直角三角形.
【点睛】
本题考查了菱形的性质和判定,平行四边形的判定,勾股定理,勾股定理的逆定理等知识点,能熟记菱形的性质和判定是解此题的关键.
21.(1)+;(2).
【解析】
【分析】
(1)分母有理化即可;
(2)先分母有理化,然后合并即可.
【详解】
解:(1);
(2)+++…+
=.
【点睛】
此题考查了二次根式的分母有理化,本题
解析:(1)+;(2).
【解析】
【分析】
(1)分母有理化即可;
(2)先分母有理化,然后合并即可.
【详解】
解:(1);
(2)+++…+
=.
【点睛】
此题考查了二次根式的分母有理化,本题中二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.找出分母的有理化因式是解本题的关键.
22.(1)y=﹣0.2x+48;(2)该列车全部车厢的总费用少于45万元,则至少挂A型车厢16节.
【分析】
(1)先变换单位,设用A型车厢x节,则用B型车厢(60﹣x)节,总运费为y万元,根据题意列出
解析:(1)y=﹣0.2x+48;(2)该列车全部车厢的总费用少于45万元,则至少挂A型车厢16节.
【分析】
(1)先变换单位,设用A型车厢x节,则用B型车厢(60﹣x)节,总运费为y万元,根据题意列出函数关系式;
(2)根据用该列车全部车厢的总费用少于45万元列出不等式求解即可.
【详解】
解:(1)6000元=0.6万元,8000元=0.8万元,
设用A型车厢x节,则用B型车厢(60﹣x)节,总运费为y万元,
依题意,得y=0.6x+0.8(60﹣x)=﹣0.2x+48;
(2)由题意,得﹣0.2x+48<45,
解得:x>15,
∵x为正整数,
∴x的最小值为16,
答:该列车全部车厢的总费用少于45万元,则至少挂A型车厢16节.
【点睛】
本题考查一次函数的应用,关键是根据题意列出函数关系式.
23.(1)证明见解析;(2);(3).
【分析】
(1)先证,再据ASA证明△ABP≌△BCQ,可证得BP=CQ;
(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RT△NDQ
解析:(1)证明见解析;(2);(3).
【分析】
(1)先证,再据ASA证明△ABP≌△BCQ,可证得BP=CQ;
(2)连接,先证,得到,设AN=x,用x表示出ND;再求出DQ和的值,再在RT△NDQ中用勾股定理列方程求解;
(3)作QG⊥AB于G,先证MB=MQ并设其为y,再在RT△MGQ中用勾股定理列出关于x、y的方程,并用x表示y;用y表示出△MBQ的面积,用x表示出△的面积.最后据用x、y表示出S,并把其中的y用x代换即可.
【详解】
(1)在正方形ABCD中
,
,
,
,
,
,
,
.
(2)在正方形ABCD中
连接,如下图:
由折叠知BC=,
又AB=BC,∠BAN=90°
∴, ,
,
,
,
,
,
设,
,
,
,
,
.
(3)如下图,作,垂足为,
由(1)知
∵∠MBQ=∠CQB=∠MQB
∴BM=MQ
设,则.
,
,
,
故.
【点睛】
此题综合考查了正方形性质、三角形全等,勾股定理等知识点,其关键是要熟练掌握相关知识,能灵活应用.
24.(1)(0,4),(﹣3,0);(2)①3;②S=4m+12,﹣3<m<0;(3)
【解析】
【分析】
(1)在中,令x=0得y=4,令y=0得x=﹣3,即可得A(0,4),B(﹣3,0),
(2)
解析:(1)(0,4),(﹣3,0);(2)①3;②S=4m+12,﹣3<m<0;(3)
【解析】
【分析】
(1)在中,令x=0得y=4,令y=0得x=﹣3,即可得A(0,4),B(﹣3,0),
(2)①当▱OPBC为菱形时,BP=OP,可得P是△AOB斜边上的中点,即得S△BOP=S△AOB=3,故S菱形OPBC=2S△BOP=6;
②过P作PH⊥OB于H,由点P的横坐标为m,且P在线段AB上,直线AB为,可得P(m,m+4),﹣3<m<0,从而S△BOP=OB•PH=2m+6,即得S=2S△BOP=4m+12,﹣3<m<0;
(3)根据四边形OPBC是平行四边形,得BC=OP,BC最小即是OP最小,故OP⊥AB时,BC最小,在Rt△AOB中,AB==5,由S△AOB=OA•OB=AB•OP,可得OP=,即得BC最小为.
【详解】
解:(1)在中,令x=0得y=4,令y=0得x=﹣3,
∴A(0,4),B(﹣3,0),
故答案为:(0,4),(﹣3,0);
(2)①当▱OPBC为菱形时,BP=OP,
∴∠PBO=∠POB,
∴90°﹣∠PBO=90°﹣∠POB,即∠BAO=∠POA,
∴PA=OP,
∴PA=OP=PB,即P是△AOB斜边上的中点,
∴S△BOP=S△AOB=×OA•OB=3,
∴S菱形OPBC=2S△BOP=6,
故答案为:3;
②过P作PH⊥OB于H,如图:
∵点P的横坐标为m,且P在线段AB上,直线AB为,
∴P(m,m+4),﹣3<m<0,
∴PH=m+4,
∴S△BOP=OB•PH=×3(m+4)=2m+6,
∴S=2S△BOP=4m+12,﹣3<m<0;
(3)∵四边形OPBC是平行四边形,
∴BC=OP,
BC最小即是OP最小,
∴OP⊥AB时,BC最小,如图:
在Rt△AOB中,AB==5,
∵S△AOB=OA•OB=AB•OP,
∴OP==,
∴BC最小为,
故答案为:.
【点睛】
本题考查一次函数综合应用,涉及三角形面积、平行四边形、菱形等知识,解题的关键是用m的代数式表示P点纵坐标和相关线段的长度.
25.(1)CE=BD,见解析;(2)6;(3)20
【分析】
(1)证△EAC≌△BAD即可;
(2)证△EAC≌△BAD,得BD=CE,易得∠EBC=90゜,从而在Rt△EBC中运用勾股定理即可求得结
解析:(1)CE=BD,见解析;(2)6;(3)20
【分析】
(1)证△EAC≌△BAD即可;
(2)证△EAC≌△BAD,得BD=CE,易得∠EBC=90゜,从而在Rt△EBC中运用勾股定理即可求得结果;
(3)连接BD,把△ACD绕点D顺时针旋转60゜得到△EBD,连接AE,则可得BE=AC,△ADE是等边三角形,从而易得AB⊥AE,在Rt△BAE中由勾股定理可求得AE,也即AD的长.
【详解】
(1)∵∠EAB=∠CAD
∴∠BAC+∠EAB=∠BAC+∠CAD
即∠EAC=∠BAD
在△EAC和△BAD中
∴△EAC≌△BAD(SAS)
∴CE=BD
(2)∵∠EAB=∠CAD=90゜
∴∠BAC+∠EAB=∠BAC+∠CAD
即∠EAC=∠BAD
∵△EAB、△CAD都是等腰直角三角形,且∠EAB=∠CAD=90゜
∴AE=AB=4,∠EBA=45゜,AC=AD
∴由勾股定理得:
在△EAC和△BAD中
∴△EAC≌△BAD(SAS)
∴CE=BD
∵∠EBC=∠EBA+∠ABC=45゜+45゜=90゜
∴在Rt△EBC中,由勾股定理得:
∴BD=6
(3)如图,连接BD
∵CD=BC,∠BCD=60゜
∴△BCD是等边三角形
把△ACD绕点D顺时针旋转60゜得到△EBD,点E与点A对应,连接AE
则BE=AC=25,△ADE是等边三角形
∴∠DAE=60゜,AD=AE
∴∠BAE=∠BAD+∠DAE=30゜+60゜=90゜
即AB⊥AE
在Rt△BAE中,由勾股定理得:
∴AD=20
【点睛】
本题是三角形的综合题,考查了三角形全等的判定与性质,等腰三角形的性质,等边三角形的判定与性质,勾股定理,旋转变换,第三问作旋转变换是关键,也是难点.本质上来说,前两问也可看成把△EAC绕A点逆时针旋转的角度一定角度而得到△BAD.
展开阅读全文