1、承德市八年级上册期末数学试卷一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2、2020年6月23日上午9时43分,北斗三号系统第30颗卫星,同时也是整个北斗系统的第55颗卫星成功发射,北斗三号全球卫星导航系统星座部署全面完成其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用1纳米0.000000001米,将22纳米用科学记数法表示为()A米B米C米D米3、下列整式的运算中,正确的是()Aa2a3a6B(a2)3a5Ca3a2a5D(ab)4a4b44、使分式有意义的的取值范围为()ABCD5、下列式子从左到右的变形是因式分解的是()ABC
2、D6、分式可变形为()ABCD7、如图,已知,添加一个条件后,仍无法判定的是()ABCD8、关于x的分式方程的解为正数,则m的取值范围是()Am2Bm2Cm2且m0Dm09、如图,在中,在延长线上取一点,在延长线上取一点,使,延长交于,若,则的度数为()ABCD二、填空题10、如图,在四边形ABCD中,ABAD,B+ADC180,E、F分别是边BC、CD延长线上的点,EAFBAD,若DF1,BE5,则线段EF的长为()A3B4C5D611、分式的值为0,则x、y满足的条件为_12、已知点和点关于轴对称,则的值为_13、已知,则的值是_14、若,则的值为_15、如图,AOB30,M,N分别是OA
3、,OB上的定点,P,Q分别是边OB,OA上的动点,如果记AMP,ONQ,当MPPQQN最小时,则与的数量关系是_.16、已知一个多边形的内角和为1440,那么它是 _边形17、已知a+b5,ab6,则ab的值为 _18、如图,于,于,且,点从向运动,每分钟走,点从向运动,每分钟走,、两点同时出发,运动_分钟后与全等三、解答题19、因式分解:(1)(2)20、解分式方程:21、如图,在ABC中,CD是AB边上高,BE为角平分线,若BFC=112,求BCF的度数22、在ABC中,CB,AE平分BAC(1)如图(1),ADBC于D,若C=75,B=35,求EAD;(2)如图(1),ADBC于D,判断
4、EAD与B,C数量关系EAD=(CB)是否成立?并说明你的理由;(3)如图(2),F为AE上一点,FDBC于D,这时EFD与B、C又有什么数量关系? ;(不用证明)23、一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地(1)原计划的行驶速度是多少?(2)这辆汽车实际花费多长时间到达了目的地24、阅读下列材料:材料1:将一个形如xpxq的二次三项式因式分解时,如果能满足qmn且pmn则可以把xpxq因式分解成(xm)(xn),如:(1)x24x3(x1)(x3);(2)x24x12(x6)(
5、x2)材料2:因式分解:(xy)22(xy)1,解:将“xy看成一个整体,令xyA,则原式A2A1(A1),再将“A”还原得:原式(xy1)上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x22x24分解因式;(2)结合材料1和材料2,完成下面小题;分解因式:(xy)8(xy)16;分解因式:m(m2)(m2m2)325、如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且ABO45,A(6,0),直线BC与直线AB关于轴对称.(1)求ABC的面积; (2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直
6、角BDE,求证:ABAE; (3)如图3,点E是轴正半轴上一点,且OAE30,AF平分OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OMNM的值最小?若存在,请写出其最小值,并加以说明.一、选择题1、B【解析】B【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可【详解】A.是轴对称图形,不是中心对称图形,故A错误;B.是轴对称图形,也是中心对称图形,故B正确;C.是轴对称图形,不是中心对称图形,故C错误;D.是轴对称图形,不是中心对称图形,故D错误故选:B【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两
7、旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心2、C【解析】C【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:22纳米220.000000001米2.2108米故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,
8、表示时关键要正确确定a的值以及n的值3、D【解析】D【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、合并同类项法则分别计算,进而判断得出答案【详解】解:Aa2a3a5,故此选项不合题意;B(a2)3a6,故此选项不合题意;Ca3与a2不是同类项,无法合并,故此选项不合题意;D(ab)4a4b4,故此选项符合题意故选:D【点睛】本题考查同底数幂的乘法、幂的乘方、合并同类型、积的乘方,掌握相应运算法则是解题的关键4、B【解析】B【分析】根据分式有意义的条件列不等式求解即可【详解】解:分式有意义,解得,故选:B【点睛】本题考查了分式有意义的条件,解题关键是掌握分式有意义
9、的条件是分母不为05、B【解析】B【分析】根据因式分解的定义判断即可【详解】解:A是整式的乘法,故A错误;B把一个多项式转化成几个整式积乘积的形式,故B正确;C因式分解出现错误,故C错误;D没把一个多项式转化成几个整式积乘积的形式,故D错误;故选B【点睛】本题考查了因式分解的定义,熟记因式分解的定义是解题的关键,把一个多项式化成几个整式的积的形式,叫因式分解6、B【解析】B【分析】根据分式的基本性质即可得【详解】解:,故选:B【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键7、C【解析】C【分析】A根据可判断,B根据,可判断,C不能判断,D根据可判断【详解】解:,A. ,B.
10、 ,C. 不能判断D. ,故选C【点睛】本题考查了三角形全等的判定定理,掌握全等三角形的判定定理是解题的关键8、C【解析】C【分析】根据分式方程的解为正数和分式方程有意义,得出x的取值范围,再解分式方程,解得,代入x的取值范围即可算出m的取值范围【详解】解:关于x的分式方程的解为正数,且且去分母得:化简得:且解得:且,故选:C【点睛】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键9、C【解析】C【分析】根据等腰三角形两个底角相等,可得:,根据传递性,可得:,再根据三角形外角等于其不相邻的两个内角的和,可得:,再根据,得到:,最后根据三角形内角和为,可得:,解出即可得
11、到的大小【详解】解: 是的外角 (三角形内角和为) 故选:C【点睛】本题考查了等腰三角形的性质,三角形的外角性质,三角形的内角和定理,解本题的关键在熟练掌握相关的性质与定理二、填空题10、B【解析】B【分析】在BE上截取BGDF,先证ADFABG,再证AEGAEF即可解答【详解】在BE上截取BGDF,B+ADC180,ADC+ADF180,BADF,在ADF与ABG中,ADFABG(SAS),AGAF,FADGAB,EAFBAD,FAEGAE,在AEG与AEF中,AEGAEF(SAS)EFEGBEBGBEDF3、故选:B【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键11、
12、且【分析】根据分式的值为零的条件:分子等于零且分母不等于零,即可得出答案【详解】解:,解得且故答案为:且【点睛】本题主要考查了分式的值为零的条件,掌握分式的值为零的条件是解决本题的关键12、1【分析】首先根据关于x轴对称的点的坐标特点列方程,再求解a,b的值,再代入计算即可【详解】解:点和点关于轴对称, 解得: 故答案为:1【点睛】本题考查的是关于x轴对称的点的坐标特点,求解代数式的值,掌握“关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数”是解本题的关键13、【分析】由,利用两个等式之间的平方关系得出;再根据已知条件将各分母因式分解,通分,代入已知条件即可【详解】由平方得:,且,则:
13、,由得:,同理可得:,原式=故答案为:【点睛】本题主要考查了分式的化简、求值问题;解题的关键是根据已知条件的结构特点,灵活运用有关公式将所给的代数式恒等变形,准确化简14、45【分析】把a2m+n化为(am)2an,再利用am=3,an=5计算求解【详解】解:am=3,an=5,a2m+n=(am)2an=95=45,故答案为:44、【点睛】本题主要考查了同底数幂的乘法及幂的乘方与积的乘方,解题的关键是把a2m+n化为(am)2an求解15、90【分析】分别作点M,N关于OB,OA的对称点,连接,交OA于点Q,交OB于点P时MPPQQN有最小值.通过三角形的内角和与外角和性质可得出, 从而得出
14、两者间的关系.【详解】解:【解析】90【分析】分别作点M,N关于OB,OA的对称点,连接,交OA于点Q,交OB于点P时MPPQQN有最小值.通过三角形的内角和与外角和性质可得出, 从而得出两者间的关系.【详解】解:如图,作M关于OB的对称点M,N关于OA的对称点N,连接MN交OA于Q,交OB于P,则MP+PQ+QN最小,易知OPM=OPM=NPQ,OQP=AQN=AQN,OQN=180-30-ONQ,OPM=NPQ=30+OQP,OQP=AQN=30+ONQ,故答案为:.【点睛】本题考查的知识点主要有轴对称,最短路线问题,三角形的内角和定理,三角形外角和的性质,解题的关键是正确的作出图形.16
15、、十【分析】根据多边形的内角和公式求解即可n边形的内角的和等于:(n2)180(n大于等于3且n为整数)【详解】解:设该多边形的边数为n,根据题意,得180(n2)=1440,【解析】十【分析】根据多边形的内角和公式求解即可n边形的内角的和等于:(n2)180(n大于等于3且n为整数)【详解】解:设该多边形的边数为n,根据题意,得180(n2)=1440,解得n=10,这个多边形为十边形,故答案为:十【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式17、【分析】根据完全平方公式的变形求解即可【详解】解:a+b5,故答案为:【点睛】本题主要考查了完全平方公式的变形求值,熟
16、知完全平方公式是解题的关键【解析】【分析】根据完全平方公式的变形求解即可【详解】解:a+b5,故答案为:【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键18、4【分析】分当CPAPQB时和当CPAPQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立【详解】当CPAP【解析】4【分析】分当CPAPQB时和当CPAPQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立【详解】当CPAPQB时,BP=AC=4(米),则BQ=AP=AB-BP=12
17、-4=8(米),P的运动时间是:41=4(分钟),Q的运动时间是:82=4(分钟),则当t=4分钟时,两个三角形全等;当CPAQPB时,BQ=AC=4(米),AP=BP=6(米),则P运动的时间是:61=6(分钟),Q运动的时间是:42=2(分钟),故不能成立综上,运动4分钟后,CPA与PQB全等,故答案为:3、【点睛】本题考查了全等三角形的判定,注意分CPAPQB和CPAQPB两种情况讨论是关键三、解答题19、(1)(2)【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可;(2)先提公因式-4x,再利用完全平方公式分解因式求解即可(1)解:;(2)解:【点睛】本题考【解析】(1)
18、(2)【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可;(2)先提公因式-4x,再利用完全平方公式分解因式求解即可(1)解:;(2)解:【点睛】本题考查提公因式法和公式法分解因式,熟记公式,正确求解是解答关键20、【分析】根据分式方程的解法去分母化为整式方程即可求解【详解】,检验:当时,原方程的解是【点睛】此题主要考查解分式方程,解题的关键是熟知分式方程的解法【解析】【分析】根据分式方程的解法去分母化为整式方程即可求解【详解】,检验:当时,原方程的解是【点睛】此题主要考查解分式方程,解题的关键是熟知分式方程的解法21、46【分析】先根据邻补角互补求出DFB的度数,然后根据直角三角
19、形两锐角互余求出DBF的度数,再根据角平分线的定义求出CBF的度数,最后利用三角形内角和定理即可求出BCF的度数【详解】【解析】46【分析】先根据邻补角互补求出DFB的度数,然后根据直角三角形两锐角互余求出DBF的度数,再根据角平分线的定义求出CBF的度数,最后利用三角形内角和定理即可求出BCF的度数【详解】解:BFC=112,DFB=180-BFC=68,CD是ABC中AB边上的高,BDF=90,DBF=90-DFB=22,BE平分ABC,CBF=DBF=22,BCF=180-BFC-CBF=46【点睛】本题主要考查了邻补角互补,直角三角形两锐角互余,角平分的定义,三角形内角和定理,正确求出
20、CBF的度数是解题的关键22、(1)20;(2)成立,理由见解析;(3)EFD=(CB)【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;(2)根据角平分线的性质和三角形内角和定理计算即可;(3)过A【解析】(1)20;(2)成立,理由见解析;(3)EFD=(CB)【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;(2)根据角平分线的性质和三角形内角和定理计算即可;(3)过A作AGBC于G,根据已知条件证明FDAG,得到EFD=EAG,即可得解;【详解】解:(1)C=75,B=35,BAC=180CB=70,AE平分BAC,EAC=BAC=35,又ADBC,DAC=90
21、C=15,则EAD=EACDAC=20;(2)AE平分BAC,CAE=BAC,BAC=180BC,EAC= BAC=90BC,EAD=EACDAC=90BC(90C)=(CB);(3)如图,过A作AGBC于G,由(2)知,EAG=(CB),AGBC,AGC=90,FDBC,FDG=90,AGC=FDG,FDAG,EFD=EAG,EFD=(CB)故答案是:EFD=(CB)【点睛】本题主要考查了角平分线的性质,三角形内角和定理,平行线的判定与性质,准确计算是解题的关键23、(1)原计划的行驶速度是60km/h(2)实际花费2小时20分钟到达了目的地【分析】(1)本题设原计划的行驶速度为xkm/h,
22、根据题意列出分式方程即可;(2)根据行驶时间=路程速度-提前时【解析】(1)原计划的行驶速度是60km/h(2)实际花费2小时20分钟到达了目的地【分析】(1)本题设原计划的行驶速度为xkm/h,根据题意列出分式方程即可;(2)根据行驶时间=路程速度-提前时间列式即可得出结论(1)解:设原计划的行驶速度是xkm/h,依题意可列方程为解得:x=60 经检验,是原方程的根, 所以原计划的行驶速度是60km/h;(2)解:,即实际花费2小时20分钟到达了目的地【点睛】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系:时间=路程速度列出分式方程;(2)根据数量关系行驶时间=路程速度-提前时间
23、列式计算24、(1)(x-y-4)2;(2)(x-y-4)2;(m-3)(m+1)(m-1)2【分析】(1)将x2+2x-24写成x2+(6-4)x+6(-4),根据材料1的方法可得(x+6)(x-4)即【解析】(1)(x-y-4)2;(2)(x-y-4)2;(m-3)(m+1)(m-1)2【分析】(1)将x2+2x-24写成x2+(6-4)x+6(-4),根据材料1的方法可得(x+6)(x-4)即可;(2)令x-y=A,原式可变为A2-8A+16,再利用完全平方公式即可;令B=m(m-2)=m2-2m,原式可变为B(B-2)-3,即B2-2B-3,利用十字相乘法可分解为(B-3)(B+1),
24、再代换后利用十字相乘法和完全平方公式即可【详解】解:(1)x2+2x-24=x2+(6-4)x+6(-4)=(x+6)(x-4);(2)令x-y=A,则原式可变为A2-8A+16,A2-8A+16=(A-4)2=(x-y-4)2,所以(x-y)2-8(x-y)+16=(x-y-4)2;设B=m2-2m,则原式可变为B(B-2)-3,即B2-2B-3=(B-3)(B+1)=(m2-2m-3)(m2-2m+1)=(m-3)(m+1)(m-1)2,所以m(m-2)(m2-2m-2)-3=(m-3)(m+1)(m-1)1、【点睛】本题考查十字相乘法,公式法分解因式,掌握十字相乘法和完全平方公式的结构特
25、征是正确应用的前提25、(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E作EFx轴于点F,【解析】(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E作EFx轴于点F,延长EA交y轴于点H,证DEFBDO,得出EFODAF,有,得出BAE90.(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6(2)过E作EFx轴于点F,延长EA交y轴于点H,BDE是等腰直角三角形,DE=DB, BDE=90,EF轴,DF=BO=AO,EF=ODAF=EFBAE90(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,OA=6,OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.