资源描述
承德市八年级上册期末数学试卷
一、选择题
1、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2、2020年6月23日上午9时43分,北斗三号系统第30颗卫星,同时也是整个北斗系统的第55颗卫星成功发射,北斗三号全球卫星导航系统星座部署全面完成.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.1纳米=0.000000001米,将22纳米用科学记数法表示为( )
A.米 B.米 C.米 D.米
3、下列整式的运算中,正确的是( )
A.a2•a3=a6 B.(a2)3=a5 C.a3+a2=a5 D.(ab)4=a4b4
4、使分式有意义的的取值范围为( )
A. B. C. D.
5、下列式子从左到右的变形是因式分解的是( )
A. B.
C. D.
6、分式可变形为( )
A. B. C. D.
7、如图,已知,添加一个条件后,仍无法判定的是( )
A. B. C. D.
8、关于x的分式方程的解为正数,则m的取值范围是( )
A.m>2 B.m<2 C.m<2且m≠0 D.m≠0
9、如图,在中,,在延长线上取一点,在延长线上取一点,使,延长交于,若,则的度数为( )
A. B. C. D.
二、填空题
10、如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,∠EAF=∠BAD,若DF=1,BE=5,则线段EF的长为( )
A.3 B.4 C.5 D.6
11、分式的值为0,则x、y满足的条件为______.
12、已知点和点关于轴对称,则的值为________.
13、已知,则的值是_________
14、若,,则的值为___________.
15、如图,∠AOB=30°,M,N分别是OA,OB上的定点,P,Q分别是边OB,OA上的动点,如果记∠AMP=,∠ONQ=,当MP+PQ+QN最小时,则与的数量关系是_________________.
16、已知一个多边形的内角和为1440°,那么它是 _____边形.
17、已知a+b=5,ab=6,则a﹣b的值为 _____.
18、如图,,于,于,且,点从向运动,每分钟走,点从向运动,每分钟走,、两点同时出发,运动______分钟后与全等.
三、解答题
19、因式分解:
(1)
(2)
20、解分式方程:.
21、如图,在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=112°,求∠BCF的度数.
22、在△ABC中,∠C>∠B,AE平分∠BAC.
(1)如图(1),AD⊥BC于D,若∠C=75°,∠B=35°,求∠EAD;
(2)如图(1),AD⊥BC于D,判断∠EAD与∠B,∠C数量关系∠EAD=(∠C﹣∠B)是否成立?并说明你的理由;
(3)如图(2),F为AE上一点,FD⊥BC于D,这时∠EFD与∠B、∠C又有什么数量关系? ;(不用证明)
23、一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40min到达目的地.
(1)原计划的行驶速度是多少?
(2)这辆汽车实际花费多长时间到达了目的地.
24、阅读下列材料:
材料1:将一个形如x²+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n则可以把x²+px+q因式分解成(x+m)(x+n),如:(1)x2+4x+3=(x+1)(x+3);(2)x2﹣4x﹣12=(x﹣6)(x+2).
材料2:因式分解:(x+y)2+2(x+y)+1,解:将“x+y看成一个整体,令xy=A,则原式=A²+2A+1=(A+1)²,再将“A”还原得:原式=(x+y+1)²
上述解题用到“整体思想”整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把x2+2x﹣24分解因式;
(2)结合材料1和材料2,完成下面小题;
①分解因式:(x﹣y)²﹣8(x﹣y)+16;
②分解因式:m(m﹣2)(m²﹣2m﹣2)﹣3
25、如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称.
(1)求△ABC的面积;
(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;
(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.
一、选择题
1、B
【解析】B
【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可.
【详解】A.是轴对称图形,不是中心对称图形,故A错误;
B.是轴对称图形,也是中心对称图形,故B正确;
C.是轴对称图形,不是中心对称图形,故C错误;
D.是轴对称图形,不是中心对称图形,故D错误.
故选:B.
【点睛】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
2、C
【解析】C
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】解:22纳米=22×0.000000001米=2.2×10−8米.
故选:C.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、D
【解析】D
【分析】直接利用同底数幂的乘法运算法则以及积的乘方运算法则、幂的乘方运算法则、合并同类项法则分别计算,进而判断得出答案.
【详解】解:A.a2•a3=a5,故此选项不合题意;
B.(a2)3=a6,故此选项不合题意;
C.a3与a2不是同类项,无法合并,故此选项不合题意;
D.(ab)4=a4b4,故此选项符合题意.
故选:D.
【点睛】本题考查同底数幂的乘法、幂的乘方、合并同类型、积的乘方,掌握相应运算法则是解题的关键.
4、B
【解析】B
【分析】根据分式有意义的条件列不等式求解即可.
【详解】解:∵分式有意义,
∴,解得,
故选:B.
【点睛】本题考查了分式有意义的条件,解题关键是掌握分式有意义的条件是分母不为0.
5、B
【解析】B
【分析】根据因式分解的定义判断即可.
【详解】解:A.是整式的乘法,故A错误;
B.把一个多项式转化成几个整式积乘积的形式,故B正确;
C.因式分解出现错误,,故C错误;
D.没把一个多项式转化成几个整式积乘积的形式,故D错误;
故选B.
【点睛】本题考查了因式分解的定义,熟记因式分解的定义是解题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.
6、B
【解析】B
【分析】根据分式的基本性质即可得.
【详解】解:,
故选:B.
【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键.
7、C
【解析】C
【分析】A根据可判断,B根据,可判断,C不能判断,D根据可判断.
【详解】解:∵,
∴
∴
∴A. ,
B. ,
C. 不能判断
D. ,
故选C
【点睛】本题考查了三角形全等的判定定理,掌握全等三角形的判定定理是解题的关键.
8、C
【解析】C
【分析】根据分式方程的解为正数和分式方程有意义,得出x的取值范围,再解分式方程,解得,代入x的取值范围即可算出m的取值范围.
【详解】解:∵关于x的分式方程的解为正数,
∴且
∴且
去分母得:
化简得:
∴且
解得:且,
故选:C.
【点睛】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键.
9、C
【解析】C
【分析】根据等腰三角形两个底角相等,可得:,,根据传递性,可得:,再根据三角形外角等于其不相邻的两个内角的和,可得:,再根据,得到:,最后根据三角形内角和为,可得:,解出即可得到的大小.
【详解】解:∵
∴
∵
∴
∴
∵是的外角
∴
∵
∴
∴(三角形内角和为)
∴
故选:C
【点睛】本题考查了等腰三角形的性质,三角形的外角性质,三角形的内角和定理,解本题的关键在熟练掌握相关的性质与定理.
二、填空题
10、B
【解析】B
【分析】在BE上截取BG=DF,先证△ADF≌△ABG,再证△AEG≌△AEF即可解答.
【详解】在BE上截取BG=DF,
∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,
∴∠B=∠ADF,
在△ADF与△ABG中
,
∴△ADF≌△ABG(SAS),
∴AG=AF,∠FAD=∠GAB,
∵∠EAF=∠BAD,
∴∠FAE=∠GAE,
在△AEG与△AEF中
,
∴△AEG≌△AEF(SAS)
∴EF=EG=BE﹣BG=BE﹣DF=3、
故选:B.
【点睛】考查了全等三角形的判定与性质,证明三角形全等是解决问题的关键.
11、且
【分析】根据分式的值为零的条件:分子等于零且分母不等于零,即可得出答案.
【详解】解:∵,
∴,
解得且.
故答案为:且.
【点睛】本题主要考查了分式的值为零的条件,掌握分式的值为零的条件是解决本题的关键.
12、1
【分析】首先根据关于x轴对称的点的坐标特点列方程,再求解a,b的值,再代入计算即可.
【详解】解:∵点和点关于轴对称,
∴
解得:
∴
故答案为:1.
【点睛】本题考查的是关于x轴对称的点的坐标特点,求解代数式的值,掌握“关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数”是解本题的关键.
13、
【分析】由,,利用两个等式之间的平方关系得出;再根据已知条件将各分母因式分解,通分,代入已知条件即可.
【详解】由平方得:,
且,则:,
由得:,
∴
同理可得:,,
∴原式=
=
=
=
=
故答案为:.
【点睛】本题主要考查了分式的化简、求值问题;解题的关键是根据已知条件的结构特点,灵活运用有关公式将所给的代数式恒等变形,准确化简.
14、45
【分析】把a2m+n化为(am)2•an,再利用am=3,an=5计算求解.
【详解】解:∵am=3,an=5,
∴a2m+n=(am)2•an=9×5=45,
故答案为:44、
【点睛】本题主要考查了同底数幂的乘法及幂的乘方与积的乘方,解题的关键是把a2m+n化为(am)2•an求解.
15、α-β=90°
【分析】分别作点M,N关于OB,OA的对称点,连接,交OA于点Q,交OB于点P时MP+PQ+QN有最小值.通过三角形的内角和与外角和性质可得出, 从而得出两者间的关系.
【详解】解:
【解析】α-β=90°
【分析】分别作点M,N关于OB,OA的对称点,连接,交OA于点Q,交OB于点P时MP+PQ+QN有最小值.通过三角形的内角和与外角和性质可得出, 从而得出两者间的关系.
【详解】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,
易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,
∵∠OQN=180°-30°-∠ONQ,∠OPM=∠NPQ=30°+∠OQP,
∠OQP=∠AQN=30°+∠ONQ,
∴.
∵,
∴
故答案为:.
【点睛】本题考查的知识点主要有轴对称,最短路线问题,三角形的内角和定理,三角形外角和的性质,解题的关键是正确的作出图形.
16、十
【分析】根据多边形的内角和公式求解即可.n边形的内角的和等于:(n−2)×180° (n大于等于3且n为整数).
【详解】解:设该多边形的边数为n,
根据题意,得180°(n−2)=1440°,
【解析】十
【分析】根据多边形的内角和公式求解即可.n边形的内角的和等于:(n−2)×180° (n大于等于3且n为整数).
【详解】解:设该多边形的边数为n,
根据题意,得180°(n−2)=1440°,
解得n=10,
∴这个多边形为十边形,
故答案为:十.
【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形的内角和公式.
17、【分析】根据完全平方公式的变形求解即可.
【详解】解:∵a+b=5,
∴,
∴,
∴,
故答案为:.
【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键.
【解析】
【分析】根据完全平方公式的变形求解即可.
【详解】解:∵a+b=5,
∴,
∴,
∴,
故答案为:.
【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键.
18、4
【分析】分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.
【详解】当△CPA≌△P
【解析】4
【分析】分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.
【详解】当△CPA≌△PQB时,BP=AC=4(米),
则BQ=AP=AB-BP=12-4=8(米),
P的运动时间是:4÷1=4(分钟),
Q的运动时间是:8÷2=4(分钟),
则当t=4分钟时,两个三角形全等;
当△CPA≌△QPB时,BQ=AC=4(米),
AP=BP==6(米),
则P运动的时间是:6÷1=6(分钟),
Q运动的时间是:4÷2=2(分钟),
故不能成立.
综上,运动4分钟后,△CPA与△PQB全等,
故答案为:3、
【点睛】本题考查了全等三角形的判定,注意分△CPA≌△PQB和△CPA≌△QPB两种情况讨论是关键.
三、解答题
19、(1)
(2)
【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可;
(2)先提公因式-4x,再利用完全平方公式分解因式求解即可.
(1)
解:
;
(2)
解:
.
【点睛】本题考
【解析】(1)
(2)
【分析】(1)先提公因式xy,再利用平方差公式分解因式求解即可;
(2)先提公因式-4x,再利用完全平方公式分解因式求解即可.
(1)
解:
;
(2)
解:
.
【点睛】本题考查提公因式法和公式法分解因式,熟记公式,正确求解是解答关键.
20、【分析】根据分式方程的解法去分母化为整式方程即可求解.
【详解】,
,
,
,
,
,
.
检验:当时,,
∴原方程的解是.
【点睛】此题主要考查解分式方程,解题的关键是熟知分式方程的解法.
【解析】
【分析】根据分式方程的解法去分母化为整式方程即可求解.
【详解】,
,
,
,
,
,
.
检验:当时,,
∴原方程的解是.
【点睛】此题主要考查解分式方程,解题的关键是熟知分式方程的解法.
21、46°
【分析】先根据邻补角互补求出∠DFB的度数,然后根据直角三角形两锐角互余求出∠DBF的度数,再根据角平分线的定义求出∠CBF的度数,最后利用三角形内角和定理即可求出∠BCF的度数.
【详解】
【解析】46°
【分析】先根据邻补角互补求出∠DFB的度数,然后根据直角三角形两锐角互余求出∠DBF的度数,再根据角平分线的定义求出∠CBF的度数,最后利用三角形内角和定理即可求出∠BCF的度数.
【详解】解:∵∠BFC=112°,
∴∠DFB=180°-∠BFC=68°,
∵CD是△ABC中AB边上的高,
∴∠BDF=90°,
∴∠DBF=90°-∠DFB=22°,
∵BE平分∠ABC,
∴∠CBF=∠DBF=22°,
∴∠BCF=180°-∠BFC-∠CBF=46°.
【点睛】本题主要考查了邻补角互补,直角三角形两锐角互余,角平分的定义,三角形内角和定理,正确求出∠CBF的度数是解题的关键.
22、(1)20°;(2)成立,理由见解析;(3)∠EFD=(∠C﹣∠B)
【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;
(2)根据角平分线的性质和三角形内角和定理计算即可;
(3)过A
【解析】(1)20°;(2)成立,理由见解析;(3)∠EFD=(∠C﹣∠B)
【分析】(1)根据角平分线的性质和三角形的内角和定理计算即可;
(2)根据角平分线的性质和三角形内角和定理计算即可;
(3)过A作AG⊥BC于G,根据已知条件证明FD∥AG,得到∠EFD=∠EAG,即可得解;
【详解】解:(1)∵∠C=75°,∠B=35°,
∴∠BAC=180°﹣∠C﹣∠B=70°,
∵AE平分∠BAC,
∴∠EAC=∠BAC=35°,
又∵AD⊥BC,
∴∠DAC=90°﹣∠C=15°,则∠EAD=∠EAC﹣∠DAC=20°;
(2)∵AE平分∠BAC,
∴∠CAE=∠BAC,
∵∠BAC=180°﹣∠B﹣∠C,
∴∠EAC=∠ BAC=90°﹣∠B﹣∠C,
∴∠EAD=∠EAC﹣∠DAC=90°﹣∠B﹣∠C﹣(90°﹣∠C)=(∠C﹣∠B);
(3)如图②,过A作AG⊥BC于G,由(2)知,∠EAG=(∠C﹣∠B),
∵AG⊥BC,
∴∠AGC=90°,
∵FD⊥BC,
∴∠FDG=90°,
∴∠AGC=∠FDG,
∴FD∥AG,
∴∠EFD=∠EAG,
∴∠EFD=(∠C﹣∠B).
故答案是:∠EFD=(∠C﹣∠B).
【点睛】本题主要考查了角平分线的性质,三角形内角和定理,平行线的判定与性质,准确计算是解题的关键.
23、(1)原计划的行驶速度是60km/h
(2)实际花费2小时20分钟到达了目的地
【分析】(1)本题设原计划的行驶速度为x km/h,根据题意列出分式方程即可;
(2)根据行驶时间=路程÷速度-提前时
【解析】(1)原计划的行驶速度是60km/h
(2)实际花费2小时20分钟到达了目的地
【分析】(1)本题设原计划的行驶速度为x km/h,根据题意列出分式方程即可;
(2)根据行驶时间=路程÷速度-提前时间列式即可得出结论.
(1)解:设原计划的行驶速度是xkm/h,依题意可列方程为解得:x=60 经检验,是原方程的根, 所以原计划的行驶速度是60km/h;
(2)解:,即实际花费2小时20分钟到达了目的地.
【点睛】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系:时间=路程÷速度列出分式方程;(2)根据数量关系行驶时间=路程÷速度-提前时间列式计算.
24、(1)(x-y-4)2;(2)①(x-y-4)2;②(m-3)(m+1)(m-1)2
【分析】(1)将x2+2x-24写成x2+(6-4)x+6×(-4),根据材料1的方法可得(x+6)(x-4)即
【解析】(1)(x-y-4)2;(2)①(x-y-4)2;②(m-3)(m+1)(m-1)2
【分析】(1)将x2+2x-24写成x2+(6-4)x+6×(-4),根据材料1的方法可得(x+6)(x-4)即可;
(2)①令x-y=A,原式可变为A2-8A+16,再利用完全平方公式即可;
②令B=m(m-2)=m2-2m,原式可变为B(B-2)-3,即B2-2B-3,利用十字相乘法可分解为(B-3)(B+1),再代换后利用十字相乘法和完全平方公式即可.
【详解】解:(1)x2+2x-24=x2+(6-4)x+6×(-4)=(x+6)(x-4);
(2)①令x-y=A,则原式可变为A2-8A+16,
A2-8A+16=(A-4)2=(x-y-4)2,
所以(x-y)2-8(x-y)+16=(x-y-4)2;
②设B=m2-2m,则原式可变为B(B-2)-3,
即B2-2B-3=(B-3)(B+1)
=(m2-2m-3)(m2-2m+1)
=(m-3)(m+1)(m-1)2,
所以m(m-2)(m2-2m-2)-3=(m-3)(m+1)(m-1)1、
【点睛】本题考查十字相乘法,公式法分解因式,掌握十字相乘法和完全平方公式的结构特征是正确应用的前提.
25、(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点F,
【解析】(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°.
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,
即可得解.
【详解】解:(1)由已知条件得:
AC=12,OB=6
∴
(2)过E作EF⊥x轴于点F,延长EA交y轴于点H,
∵△BDE是等腰直角三角形,
∴DE=DB, ∠BDE=90°,
∴
∵
∴
∴
∵EF轴,
∴
∴DF=BO=AO,EF=OD
∴AF=EF
∴
∴∠BAE=90°
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,
∵,OA=6,
∴OM+ON=3
【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.
展开阅读全文