资源描述
人教版八年级上学期压轴题数学检测试卷含解析(一)
1.如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式.
(1)________;
(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断△APN的形状并说明理由;
(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分∠ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG.试说明,CG与FG的数量关系.
2.已知,如图1,射线分别与直线相交于两点,的平分线与直线相交于点,射线交于点,设,,且.
(1) ______°,______°;直线与的位置关系是______;
(2)如图2,若点是射线上任意一点,且,试找出与之间存在的数量关系,证明你的结论;
(3)若将图中的射线绕着端点逆时针方向旋转(如图3),分别与相交于点和时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由.
4.已知△ABC是等边三角形,△ADE的顶点D在边BC上
(1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数;
(2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF;
(3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由.
4.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足.
(1)直接写出______,______;
(2)连接AB,P为内一点,.
①如图1,过点作,且,连接并延长,交于.求证:;
②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标.
5.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.
6.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11).
(1)若,试求出A的关联点坐标;
(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式.
(3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式.
7.如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
8.我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”.
(1)如下:①平行四边形,②矩形,③菱形,④正方形,一定是“菠菜四边形”的是________(填序号);
(2)如图1,四边形ABCD为“菠菜四边形”,且∠BAD=∠BCD=90°,AD=AB,AE⊥CD于点E,若AE=4,求四边形ABCD的面积;
(3)①如图2,四边形ABCD为“菠菜四边形”,且AB=AD,记四边形ABCD,△BOC,△AOD的面积依次为S,,,若.求证:ADBC;
②在①的条件下,延长BA、CD交于点E,记BC=m,DC=n,求证:.
【参考答案】
2.(1)0
(2)等腰三角形,见解析
(3)CG=2FG
【分析】(1)由可得,得出a、b的值即可求解;
(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;
解析:(1)0
(2)等腰三角形,见解析
(3)CG=2FG
【分析】(1)由可得,得出a、b的值即可求解;
(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;
(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论.
(1)
解得
(2)
是等腰三角形,理由如下:
由点A(a,0)、点B(b,0)为x轴上两点,且
可得,OA=OB
OC垂直平分AB
,
是等腰三角形
(3)
,理由如下:
如图,延长GF至点M,使FM=FG,连接CG、CM、AM
F为AD的中点
在和中
垂直平分
,BG平分
为等边三角形,
在和中
即是等腰三角形
为等边三角形
在 中, .
【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键.
3.(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.
【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;
(2)结论:∠FMN+∠
解析:(1)30,30,AB//CD;(2)+=180°,证明见解析;(3)不变,.
【分析】(1)利用非负数的性质可知:α=β=40°,推出∠EMF=∠MFN即可解决问题;
(2)结论:∠FMN+∠GHF=180°.只要证明GH∥PN即可解决问题;
(3)结论:的值不变,=2.如图3中,作∠PEM1的平分线交M1Q的延长线于R.只要证明∠R=∠FQM1,∠FPM1=2∠R即可;
【详解】解:(1)∵,
∴60-2α=0,β-30=0,
∴α=β=30°,
∴∠PFM=∠MFN=30°,∠EMF=30°,
∴∠EMF=∠MFN,
∴AB∥CD;
(2)结论:∠FMN+∠GHF=180°,
理由如下:如图2中,
∵AB∥CD,
∴∠MNF=∠PME,
∵∠MGH=∠MNF,
∴∠PME=∠MGH,
∴GH∥PN,
∴∠GHM=∠FMN,
∵∠GHF+∠GHM=180°,
∴∠FMN+∠GHF=180°;
(3)的值不变,=2.
理由如下:如图3中,作∠PEM1的平分线交M1Q的延长线于R,
∵AB∥CD,
∴∠PEM1=∠PFN,
∵∠PER=∠PEM1,∠PFQ=∠PFN,
∴∠PER=∠PFQ,
∴ER∥FQ,
∴∠FQM1=∠R,
设∠PER=∠REB=x,∠PM1R=∠RM1B=y,
则有:,可得∠EPM1=2∠R,
∴∠EPM1=2∠FQM1,
∴=2.
【点睛】本题考查几何变换综合题、平行线的判定和性质、角平分线的定义、非负数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造平行线解决问题.
4.(1)60°;(2)见解析;(3)不变,
【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;
(2)由题意,先求出∠BEC=30°,然后求出∠CF
解析:(1)60°;(2)见解析;(3)不变,
【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;
(2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;
(3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案.
【详解】解:(1)根据题意,
∵AD=DE,∠AED=60°,
∴△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∵AB=AC,∠BAC=60°,
∴,
即,
∴△BAD≌△CAE,
∴∠ACE=∠B=60°;
(2)连CF,如图:
∵AB=AC=AE,
∴∠AEB=∠ABE,
∵∠BAC=60°,∠EAC=90°,
∴∠BAE=150°,
∴∠AEB=∠ABE=15°;
∵△ACE是等腰直角三角形,
∴∠AEC=45°,
∴∠BEC=30°,∠EBC=45°,
∵AD垂直平分BC,点F在AD上,
∴CF=BF,
∴∠FCB=∠EBC=45°,
∴∠CFE=90°,
在直角△CEF中,∠CFE=90°,∠CEF=30°,
∴CE=2CF=2BF;
(3)延长AE至F,使EF=AE,连DF、CF,如图:
∵∠AED=90°,EF=AE,
∴DE是中线,也是高,
∴△ADF是等腰三角形,
∵∠ADE=30°,
∴∠DAE=60°,
∴△ADF是等边三角形;
由(1)同理可求∠ACF=∠ABC=60°,
∴∠ACF=∠BAC=60°,
∴CF∥AB,
过E作EG⊥CF于G,延长GE交BA的延长线于点H,
易证△EGF≌△EHA,
∴EH=EG=HG,
∵HG是两平行线之间的距离,是定值,
∴S△ABE=S△ABC=;
【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
5.(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明
解析:(1)3,;(2)①见解析;②的坐标为(,)
【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;
(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB;
②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n) ,M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解.
【详解】(1)∵,
∴,
∴,,
解得:,,
故答案为:3,;
(2)①连接AC,
∵∠COP=∠AOB=90°,
∴∠COP-∠AOP =∠AOB-∠AOP,
∴,
在△OPB和△OCA中,
,
∴△OPB≌△OCA(SAS),
∴AC=BP,∠OCA=∠OPB=90°,
过点B作BN⊥BP,交CP的延长线于点N,
∵∠COP=90°,OP=OC,
∴∠OCP=∠OPC=∠ACP=45°,
∵∠OPB=90°,
∴∠BPN=45°,
∴△BNP为等腰直角三角形,
∴∠BPN=∠N=45°,
∴BN=BP=AC,
在△ACD和△BND中,
,
∴△ACD≌△BND(AAS),
∴AD=DB;
②∵∠AOB=90°,AO=OB,
∴△AOB为等腰直角三角形,
∴∠OBA=45°,
∵∠MBO=∠ABP,
∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°,
∴∠MBP=45°,
∵OP⊥BP,
∴△BMP为等腰直角三角形,
∴MP=BP,
过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE,
∴∠MPE+∠EMP=∠MPE +∠FPB=90°,
∴∠EMP=∠FPB,
在△PBF和△MPE中,
,
∴△PBF≌△MPE(AAS),
∴BF=EP,PF=ME,
∵P(2n,−n),
∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n,
∴MH=ME-EH=3−n−2n=3−3n,
∴E(2n,n) ,M(3n−3,n),
∴点P,E关于x轴对称,
∴OE=OP,∠OEP=∠OPE,
同理OM=OE,点M,E关于y轴对称,
∴3n−3+2n=0,
解得,即点M的坐标为(,).
【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题.
6.(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全
解析:(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;
②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;
(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.
【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°﹣2×50°=80°,
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,
∴∠ACD=∠BCE,
∵△ACB,△DCE都是等腰三角形,
∴AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE.
②解:∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵点A、D、E在同一直线上,且∠CDE=50°,
∴∠ADC=180°﹣∠CDE=130°,
∴∠BEC=130°,
∵∠BEC=∠CED+∠AEB,∠CED=50°,
∴∠AEB=∠BEC﹣∠CED=80°.
(2)结论:AE=2CF+BE.
理由:∵△ACB,△DCE都是等腰直角三角形,
∴∠CDE=∠CED=45°,
∵CF⊥DE,
∴∠CFD=90°,DF=EF=CF,
∵AD=BE,
∴AE=AD+DE=BE+2CF.
【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键.
7.(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关
解析:(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;
(3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可.
(1)
解:(1),
,,,,
,,
的关联点坐标为:,
故笞案为:;
(2)
整式是只含有字母的整式,整式是与的乘积,
是二次多项式,且的次数不能超过次,
中的次数为次,
设 ,
,
,,,,
整式的关联点为,
,,
解得:,,
;
(3)
根据题意:设,
,
,,,,
整式 的关联点为,
,,
,,
,
把代入得: ,
解得: ,
或,
或.
【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.
8.(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延
解析:(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
9.(1)③ ④
(2)16
(3)①见解析;②见解析
【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;
(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,
解析:(1)③ ④
(2)16
(3)①见解析;②见解析
【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;
(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,,求出,求出,代入求解即可;
(3)记面积为,则,,根据已知条件可得,进而可得,得出
由平分线的性质结合等腰三角形的性质可得BD平分,过点D作于点H,作于点N,则DH=DN,则,由此即可得出结论.
(1)
根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形,
故答案为:③④
(2)
如图,过A作,交CB的延长线于F,
∴ 四边形AFCE是矩形
则
四边形AFCE是正方形,
即四边形ABCD的面积为16
(3)
①记,
∴
∵
∴
∴
∵
∴
∴
∴
∴
如图:作,
∴
∴ AMAD
∴四边形AMND为平行四边形
∴ADMN
∴ADBC
②∵ADBC
∴
又∵AD=AB
∴
∴
∴BD平分
如图:
∵
∴
∴
又∵
∴
∴
【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键.
展开阅读全文