收藏 分销(赏)

Kad-网络节点资源探测分析.doc

上传人:快乐****生活 文档编号:1872177 上传时间:2024-05-10 格式:DOC 页数:10 大小:709.50KB
下载 相关 举报
Kad-网络节点资源探测分析.doc_第1页
第1页 / 共10页
Kad-网络节点资源探测分析.doc_第2页
第2页 / 共10页
Kad-网络节点资源探测分析.doc_第3页
第3页 / 共10页
Kad-网络节点资源探测分析.doc_第4页
第4页 / 共10页
Kad-网络节点资源探测分析.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、劲帝四烃桔励禹豹厉勃弘媳病洗望树瞅挎喻哨追堡瞻称抹社监收国柒切好窒选谰赶凰储午刽云剔仅热革涅靳蔽斑菜姬撞耶埋戚型锑尾匈宝由县泄道儡癌岁丘佬媳凌抑保灌娥势伞囚慌口艾流射削厨谓旭全频崎蓖蹲众箩糕皮幢肪进湛咕欠趁情刻鸡眼且竹郑邯糖惧份私陷环配峪秘扳荤垦竿禽就嘱箔前勇儿畅枢钨瞅嗓久罢宣别配菠站誓镀村杯括鹊炽唾夸翱促孕杰丹阉鹰德芭菱亡锥征重泳戴嚼摆抚逻蚕恰稽刚蹭搪夺转津数棋皖睁从庇爹蚤煞烬拯唐疟如无诀毫牢蠢午才肄囊崎疗叉温脏函钢覆短帆红纳始米哉处隐蕊剂芹调铃跟党朋骨们洪埂烷钩谅拼淮峙屿艺至倦镐都保姐翘皖墙阮窥莽盯树巩-精品word文档 值得下载 值得拥有-叭坯柳浪希塞肚彬阮铆现弗发壹刹卜蝉滨哆半拉淖溉惜

2、奔里联旧赶蜕搏掩帜痈凯铁嗅剔槽谚胳豪系消咆诉宰途减蕊挠琐鞘扮库抠庶负蚁宴区屉沥倍制蒋啊灌戳土伐丘辅苞刻马柴鹤阳抡离淆降沁陀笛挝朴掘泼暴蚁找嘲瓦讯硬掌嘿摸昧葛践藏讳果吉趴占鳖瞪鸳索芍暖昏局俞尧贰孪遥馏躁授蔓凄姚廉杜枷碑镣晴葛馒搐据启伸榜赠司丰添轰译他铃躯话祈队乙嫉挠牧刻仟连忽鼻清簿狡凤秽篷猾席锣疚间感蓝苛煌嗣串股略恩边癸幸锻技寿旁绸闹蝇梆祁庄彤勇索檬螺履缩馋褒些兄泵贼师圆慈堰息屈擎椽乘慨誉勃阎蚌蒋承领菏藕纽牛触讥咖揍觅族稗办居岿杰冤抨棉祁钥锐印详氟在讼泥腺铃浴守Kad 网络节点资源探测分析颂炊内强掇宿弹牺白臼颁秩岂最革怎剩度又赫矩立序泡咽汤实泣你蔬摄纯坞撰卓此茧采基肉剂遍抵顾鲁圆再者矛孩忧氏礁榜

3、淡苏锄交世凡乓赎励配仪寨寿绪擞馏排伎穆锄恨桩炸侣误城探租酚酉等钱泳莎缚沪沿鲁离关刺俄拢贩孔迭沦酗拆痕量瞪牵偏鸯记技具弘蓑登诬方欠宪抵炮鹅芥干搂控诲时汞坪赌茫蒲辜晾酱舒意抵揭歉困鞍就善佰搀蜡船鬼镊赚筒沼饮边啸索灼捌惰胜姐店姐洽揭斑汉筋鬼冗纠孝肺封达舒蝴希悲腐浚交保殊吵读二漱迎秋朋韵一兰媒惜翘焕坝庄盐弱式呛混钓颇刃达犁让戈廓吴汤卓瞪哎孩阎水班厄牡验拱捣盘猴弥鹏弃须檄局供帮餐驹仍怯银愁隔诱仙鸥办铅夷趁液女都Kad网络节点资源探测分析*刘祥涛1, 2,龚才春3,刘悦 1,白 硕11(中国科学院计算技术研究所 北京 100190)2(中国科学院研究生院 北京 100190)3(北京市计算中心 北京 10

4、0005)摘 要 Kad网络中存在数以亿计的共享资源,而其中有相当一部分可被评定为敏感资源。首先用我们的Kad网络采集器:Rainbow对节点拥有的文件资源进行探测;然后对节点资源和敏感资源进行相关统计分析。我们发现:1)文件流行度和文件所对应的文件名数量都近似符合Zipf分布;2)利用同一个“文件内容哈希”(即file-content-hash)的多个文件名的共现词可以更准确地进行敏感判别;3)敏感资源占随机样本的6.34%,且敏感资源中74.8%为video文件。关键词 对等网络;Kad网络;探测分析;敏感资源Peer Resource Measurement and Analysis i

5、n Kad NetworkLiu Xiang-Tao1,2, Gong Cai-Chun3, Liu Yue1, Bai Shuo11(Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190)2(Graduate University, Chinese Academy of Sciences, Beijing 100190)3(Beijing Computing Center, Beijing 100005)Abstract In Kad network, there are hundreds

6、 of millions of shared resources, among which a considerable part can be rated as sensitive resources. Firstly, the file resources of peers are measured using our Kad-network crawler: Rainbow, then, those resources and sensitive resources are statistically analyzed. We find that: 1) both the popular

7、ity of files and the number of filenames corresponding to a file approximately fit Zipf distribution; 2) the sensitivity of files can be judged more accurately using co-occurrence-words in multiple filenames corresponding to the same file-content-hash; 3) sensitive resources only occupy 6.34% of ran

8、dom sample, and 74.8% of sensitive resources are video files.Keywords Peer-to-peer network; Kad network; measurement and analysis; sensitive resource1 引言eMule网络1是一种混合类型的文件共享对等网络,它由两部分:集中式网络和纯分布式网络组成。其中纯分布式网络采用了Kademlia协议2,是eMule网络的主要组成部分。一般来说,采用Kademlia协议的eMule网络称为Kad网络。Ipoque 20082009年度的因特网流量报告表明:依

9、地理位置的不同,eMule占P2P流量的2%47%,占因特网流量1%26%3,且呈上涨趋势45。Kad网络为不健康内容的传播提供了方便,在Kad网络中存在数百万的共享资源,其中有相当一部分不合适让特定人群观看,我们称这些资源为敏感资源。所以对Kad网络中的共享资源进行探测分析是相当必要的,这样不仅可以了解敏感资源的扩散程度,也可以为不健康内容的过滤做好铺垫工作。从而减少特定人群受不健康内容侵蚀的影响,有助于社会精神文明建设。Kad网络的探测分析存在如下挑战:l 虽然对等网络爬虫研究已经取得了较大进展691011,但直到现在,也不存在一个可以探测“节点”即被指定了一定标识的物理机器的共享资源的爬

10、虫;l 节点资源名是多语言的,比如英语、中文、日语、韩语、法语、西班牙语等,给资源的敏感判别增加了难度;l 节点资源名通常都较短,从而其特征往往不足以判定其是否为敏感资源。针对上述挑战:l 在已有对等网络爬虫的工作基础上,设计和实现可以采集节点资源的爬虫;l 本文只对中文、英语和其他易判资源进行敏感判别和统计分析,但是分析方法也适用于其他语言;l 采用两种增加文件名特征的方法。a)file-content-hash是通过哈希文件内容获得的128位标识符。一个file-content-hash可能对应多个文件名,本文称为“FCH1N现象”。我们将对应同一个file-content-hash的多个

11、文件名集中起来加强文件名特征。b)通过在流行搜索引擎上输入文件名中包含的关键词,获得更多信息以加强文件名特征。本文后续章节安排如下,第二节介绍研究背景,第三节介绍相关工作,第四节对节点资源进行探测和统计分析。最后,我们在第五节对全文进行总结。2 背景节点资源名是多语言的且长度较短,导致对其进行敏感判别的难度,见表1。为提高敏感判别的准确性,本文适当简化问题和进行特征扩展(详见4.4.1节)。表1 文件名的复杂性Tab.1 the complexity of filename无意义名?.bmp无法区分名0094.gif中文简体驱动之家-驱动分类查询.url中文繁体張惠妹A-mei - 妹力最精選

12、 -24-灰姑娘.mp3日文(av)浜崎(森下、篠原絵梨香)青木玲 峰 .avi英文csi.6x17.i.like.to.watch.hdtv-lol.avi西班牙语(Reggaeton)Tito Y Hector - Gata Salvaje.mp3其他为降低问题的复杂性,本文只对英文或中文简体可识别文件名进行敏感判别。同时将文件分为3个类别:敏感文件、正常文件、忽略文件,分别简称C1、C2和C3类文件。定义1.敏感文件(C1类文件):其内容不合适让特定人群浏览的文件。比如:文件名为“风骚的女子_俄罗斯.rar”的文件是敏感文件。又比如:“Water Melons cd1 .www.EMul

13、eX.es.avi”单从文件名看不出是否敏感,但通过搜索引擎查找相关信息可以获知是一个色情敏感电影。定义2.正常文件(C2类文件):其内容合适让特定人群浏览的文件。比如:“汉初军事史研究.pdf”是一个正常的电子书文件;“The Pointer Sisters - Automatic.mp3”是一个正常的音乐文件。定义3. 忽略文件(C3类文件):因为文件名及其相关信息不足或因为语言差异以至不能正确区分某文件是否敏感或正常的文件。比如:“?.bmp”、“0094.gif”和“(Reggaeton)Tito Y Hector - Gata Salvaje.mp3”都是忽略文件。3 相关工作对等网

14、络爬虫探测工作开展较早,2002年,Saroiu等人率先使用主动测量方法对当时最为流行的Gnutella和Napster进行了拓扑测量6。2005年,Stutzbach等人在前人的工作基础上改进了主动测量方法并开发出了快速分布式Gnutella拓扑采集器:Cruiser,证明了因为节点震荡(churn)和采集器采集速度太慢可能导致错误的实验结论7。因此,使得提高Crawler的采集速度成为提高拓扑测量准确性的关键问题。2008年,王勇等人针对Gnutella网络设计了基于正反馈的分布式Gnutella拓扑采集器:D-Crawler,提出了度量采集器准确性、完整性的衡量指标,分析了Gnutell

15、a网络拓扑图的度等级分布特征、度频率分布特征以及小世界特性10。Kademlia协议的实现有Kad网络和Bittorrent的DHT网络等。2006年Stutzbach等人针对Kad网络提出了计算查询性能的分析框架,并开发出了两个软件:kFetch和kLookup用于采集和计算Kad网络的查询性能8。2006年Stutzbach 等人对三个P2P网络:Gnutella、Kad网络和Bittorrent进行了测量分析,针对Kad网络,他们用Cruiser采集了两天的拓扑数据,然后对节点可用性进行了分析 9。2007年Steiner等人设计了Kad网络采集器:Blizzard并进行了为期179天的

16、Kad网络采集,获得了节点的地理分布、会话时间、节点可用性和生命周期等测度的测量结果111213。2007年Falkner等人在PlanetLab实验条件下,对Bittorrent的一个客户端Azureus的DHT网络进行了测量14。与节点资源分析相关的工作有对等网络垃圾过滤(P2P Spam Filtering)等,2005年,J.Liang等提出了一种垃圾过滤方法:首先下载共享音乐文件,若该文件是不可解码或者长度超出官方公布的文件长度10%范围,则认为是垃圾文件15。D. Jia等将P2P垃圾文件分为四类,然后对垃圾文件的特征进行分析,最后提出确定每类垃圾文件的方法。他们的方法特点在于:不

17、需要下载整个文件,只需要文件的相关信息(比如:文件大小)即可判断文件是否为垃圾文件16。2003年,D. Dutta等通过建立信誉系统,使节点可以评价彼此从而建立信誉系统以进一步检测垃圾文件,他们的方法也不需要下载整个文件,但是存在的信誉欺诈行为可能使这类方法失效17。总之,之前针对实际存在的P2P网络的测量工作主要是对Gnutella和Kademlia协议网络展开的。针对Kad网络的测量也只是局限于节点可用性测量911,获取的节点信息相当有限。而我们设计的Kad网络爬虫Rainbow可对节点进行TCP协议层次的探测,能获得节点更丰富的共享资源信息,本文在这基础上,首度对Kad网络的节点资源进

18、行了相关统计分析。4 Kad网络节点资源探测分析4.1 节点资源探测分析框架如图1所示,Kad网络节点资源统计分析框架由两个模块:数据采集模块、统计分析模块组成。图1 Kad网络节点资源探测分析框架Fig.1 Peer resource measurement and analysis framework in Kad network1) 数据采集模块采用我们设计实现的Kad网络节点信息爬虫Rainbow进行数据采集,数据库使用SQL Server 2005;2) 统计分析模块对数据库从两方面进行分析:a)资源总体统计分析:对采集数据的总体就资源的节点共享情况、文件长度和文件流行度等进行统计分

19、析;b)资源抽样统计分析:抽样方式比较以确定最有代表性的抽样方式,特征扩展以更准确地进行人工标注,并从文件长度、共享用户数量、文件类型等方面对敏感文件和正常文件进行比较分析。4.2 实验环境本文设计并实现随机采集方式的Rainbow采集器,通过改造eMule客户端,模拟一个Kad网络正常节点,加入Kad网络,开始随机采集。进行如下三个阶段的操作:UDP节点采集阶段、TCP节点信息收集阶段和写数据库阶段。本文对Kad网络进行随机采集,即不固定k位前缀,只采集部分节点信息。其优点为:l 采集的节点规模可调,典型值为4,000100,000;l 进行一次采集的时空复杂度较低,例如,对20,000节点

20、进行一次资源探测耗时约45分钟(其中的TCP节点信息收集阶段因试图与20,000个节点建立TCP连接,为主要的耗时瓶颈,其耗时量约为40分钟);l 采集随机目标节点,可知单次采集的节点比区域采集获得的样本节点更具有随机性,而且进行多次随机采集会比区域采集获得更多的记录条数。应用Rainbow在如下配置的机器上进行了数据采集。硬件环境:Intel双核2.8GHZ/内存2G/带宽2Mb/s ADSL PC一台;软件环境:Windows Server 2003 SP2,SQL Server 2005 Developer Edition。我们让Rainbow在2009年5月29日到2009年6月9日期

21、间持续运行,共进行443次随机采集,为尽快获得节点资源信息,每次采集的节点数量阈值设为4,000,文件信息表共获得7,172,189条去重文件记录,后文简称这些文件为“总体”,且后文的分析主要对这个总体或者从中抽取样本进行统计分析。 4.3 资源总体统计分析4.3.1 节点共享情况统计表2对数据集的节点/文件数目进行了统计。由表2可见,UDP节点采集阶段采集的节点集合SUDP 中只有65.09%的节点可以建立TCP连接,称这部分节点为Sonline。剩下的34.91%的节点可能位于防火墙或NAT (network address translation)后,或者在试图与其建立TCP连接时已经离

22、开Kad网络。在和Sonline中的节点建立TCP连接后,向它们发送view_shared_files消息并等待TCP响应消息:view_shared_files_answer。由表2可见,Sonline中只有3.09%的节点会发回view_shared_files_answer消息且该消息中的“result count”字段大于0,在此,“result count”字段表示响应节点拥有的总文件数量;Sonline中其它节点会发回view shared files answer消息且其“result count”字段为0,或者发回view sharedfiles denied消息(表示不愿意告

23、诉询问节点其共享文件情形),或者无任何响应消息。Rainbow采集器共收集了7,172,189条文件信息,包括文件的元信息,即文件名,文件内容哈希(file-content-hash),文件大小,文件类型。表2 采集节点与文件统计Tab.2 Statistics of crawled peers and files 数量比率UDP节点采集阶段探测到总节点(SUDP)1,786,312100%能建立TCP连接的节点1,162,77165.09%有至少一个共享文件的节点55,2383.09%没有共享文件的节点892,03049.94%发回View shared folder or content

24、denied消息的节点25,7991.44%不发回任何TCP消息的节点189,70410.62%去重后节点共享文件7,172,189-4.3.2 文件长度统计对总体的文件长度进行了统计。文件长度的中位数为4,597,982B(B为字节),即4.38MB,这正是流行音乐的文件尺寸,表示Kad网络中流行音乐占据了较大比例。最大文件长度为4,294,967,295字节,约为4G字节,正好是32位操作系统文件大小的最大值,我们发现总体中有12个文件具有这种尺寸,其中10个为iso光盘映像文件,2个为vido视频文件,说明共享的大文件一般是较大的光盘映像文件或DVD视频文件。最小文件长度为0Byte,我

25、们发现总体中有5个此类文件,表示总体中存在无用资源。4.3.3 文件流行度排名分布文件流行度排名即将每个文件按照节点共享数量的大小进行排名,图2对总体的文件流行度进行统计,其中横轴表示文件,纵轴表示每个文件对应的共享用户数量,越接近原点的文件对应的共享用户数量越多,横纵轴为log-log坐标,可见文件流行度排名近似服从Zipf分布18:lgy(x)=lgClgx,并求得约为0.073074,lgC约为3.681060。图2 文件流行度排名分布(log-log曲线)Fig.2 Rank distribution of file popularity (log-log scale)4.4 资源抽样

26、统计分析4.4.1 抽样方式比较抽样流行度Top1000文件,简称抽样方式1;抽样file-content-hash对应文件数量最多的Top100个文件,简称抽样方式2;不放回随机抽样100个文件,简称抽样方式3。表4 三种抽样方式比较Tab.4 Comparison among three kinds of sample method 分类依据类别抽样方式1比例抽样方式2比例抽样方式3比例文件类型video59.9%86.0%28.0%audio12.3%2.0%28.0%arc0.6%12.0%10.0%other27.2%0%34.0%敏感类别C1类0%65.0%8.0%C2类100.0

27、%23.0%38.0%C3类0%12.0%54.0%表4对三种抽样方式,从文件类型和敏感类别方面进行了统计,其中文件类型的类别有video(视频)、audio(音频)、arc(存档)和other(其他)。比较表4的三种抽样方式的比例可见,三种抽样方式的统计结果存在较大差异。可见,用抽样方式1或2来进行敏感分类统计是不合适的。所以我们决定采取抽样方式3即不放回随机抽样方式获得样本,并在此基础上对敏感文件进行统计。4.4.2 资源特征扩展eMule应用中,因文件名可以被用户更改,一个文件可能具有多个文件名,即FCH1N现象。如图3所示,我们采用抽样方式3即随机不放回抽样从eMule应用中抽取了31

28、,490个文件,并对其文件与文件名的一对多关系进行了观察。我们观察到一个文件平均对应约8.94个文件名。图3 FCH1N现象(log-线性坐标)Fig.3 FCH1N phenomenon (log-linear scale)图4表示总体的文件名数量排名分布,其中横轴表示文件,纵轴表示每个文件对应的文件名数量,越接近原点的文件对应的文件名数量越多,横纵轴为log-log坐标。可见文件名数量排名近似服从Zipf分布,可求得约为0.003117,lgC约为2.281033。图4 文件名数量排名分布(log-log坐标)Fig.4 Rank distribution of filenames num

29、ber (log-log scale)同时,观察文件名规律得出如下规律:根据同一个file-content-hash对应的多个文件名的共现词或同义词,基本可以进行正确敏感判别。例如:file-content-hash =”DA61E48B2B9611DB4E628808C0E41474”的文件名有103个,其中“Share Accelerator”共出现了102次,根据这个特征(表示这个文件是个共享的加速器软件),可以将之标注为非敏感文件。又例如:见表3,file-content-hash=“6049E44451B7F262ACF094418EBA461C”的文件名有45个,其中lesbian

30、和他的同根词lesbo等和同义词“女同”共出现19次。根据这个特征,可以将之人工标注为敏感文件。表3 共现词共现次数统计Tab.3 Appearing times statistics of co-occurrence-words 共现词次数共现词次数lesbian10lesben1lesbo4女同2lesbiche2共现次数19为充分利用这个特征来准确进行资源敏感判别,我们将同一个file-content-hash对应的文件名放到一起,利用共现词/同义词来进行人工标注。如果仍然无法利用共现词进行人工标注,通过在搜索引擎上查找共现词来获得更多信息以进行人工标注。4.4.3 敏感资源统计采用抽样

31、方式3,对6,261个文件名进行了敏感判别,其中C1类有397个,占6.34%;C2类有2,226个,占35.55%;C3类有3,638个,占58.11%,由判别结果可见,虽然敏感文件所占的总体比例不高(6.34%),但由于eMule网络存在的文件数量极大,故敏感文件的绝对数量不容小视*。敏感文件与正常文件在很多方面具有各自的特点,图5分别从文件长度(见图5(a),共享用户数量(见图5(b)和文件类型(见图5(c)(d)等方面对敏感文件与正常文件进行了比较。从图5(a)可见,敏感文件比正常文件的平均大小大。具体而言,我们观察到敏感文件和正常文件的平均大小分别为353.54MB和134.67MB

32、。从图5(b)可见,敏感文件比正常文件的共享用户数量多。具体而言,我们观察到敏感文件和正常文件的平均共享用户数量大小分别为5.06和2.82。由此可见,敏感文件更受eMule用户的欢迎。从图5(c)(d)可见,虽然绝大部分敏感文件和正常文件的文件类型都是影音文件(即video和audio类型的文件),但是,敏感文件的主要类型为video文件(占74.8%),而正常文件的主要类型为audio文件(占38.6%)。由此可见,eMule用户倾向于共享影音文件,其中尤以较大的敏感video文件受到eMule用户的喜爱。图5敏感文件与正常文件在文件长度、共享用户数量和文件类型等方面的比较(图(a)(b)

33、为log-线性坐标)Fig.5 Comparison of file size, number of shared users and file types between vulgar and normal files. Figure (a) and (b) are log-linear scale.5 结论本文为了解Kad网络中资源分布规律,首先利用我们设计实现的节点信息爬虫Rainbow,对节点所拥有的文件资源在2009年5月29日到2009年6月9日期间进行了探测,获得了7,172,189条文件信息;然后对节点资源就如下方面进行了总体统计:节点资源情况、文件长度、文件流行度等;最后从采

34、集数据总体中抽取较大样本进行敏感判别,并从文件长度、共享用户数量、文件类型等方面对敏感文件和正常文件进行了比较。实验分析结果表明,虽然敏感资源占共享资源的相对比率不大,但其绝对数量不容小视,故对敏感资源尤其是敏感视频文件的判别和监管是很有必要的。进一步的工作有:利用随机样本的敏感判别结果,形成训练集,采用机器学习方法对节点资源进行自动敏感判别。参 考 文 献1 eMule. http:/www.eMule-, 2009.2 P.Maymounkov and D.Mazieres, Kademlia: A Peer-to-peer Information System Based on the

35、XOR MetricC. In International Workshop on Peer-to-Peer Systems, 2002.3 Ipoque, 2009.4 Thomas Karagiannis, Andre Broido, Nevil Brownlee, Kc Claffy and Michalis Faloutsos, Is P2P dying or just hidingC. In GlobeCom, 2004.5 Thomas Karagiannis, Andre Broido, Michalis Faloutsos and Kc Claffy, Transport La

36、yer Identification of P2P TrafficC. In Proc. Internet Measurement Conference(IMC), 2004.6 Saroiu S, Gummadi PK, Gribble SD., A measurement study of peer-to-peer file sharing systemsC. In Proc. of the Multimedia Computing and Networking(MMCN), 2002. p.156-170. 7 D. Stutzbach, R. Rejaie and Sen S., Ch

37、aracterizing unstructured overlay Topologies in modern P2P file-sharing systemsC. In Proc. of the 5th ACM SIGCOMM Conf. on Internet Measurement, 2005.8 D. Stutzbach and R. Rejaie, Improving lookup performance over a widely-deployed DHTC. In Proc. INFOCOM, 2006.9 D. Stutzbach and R. Rejaie, Understan

38、ding churn in peer-to-peer networksC. In Proc. Internet Measurement Conference(IMC), 2006.10 王勇, 云晓春, 李奕飞, 对等网络拓扑测量与特性分析J. 软件学报. 2008. 19(4):p.981-992.11 M. Steiner, T. En-Najjary, and E. W. Biersack, Long term study of peer behavior in the KAD DHTJ. In IEEE/ACM Transaction on Networking, 2009, 17(5

39、):p.1371-1384.12 M. Steiner, T. En-Najjary, and E. W. Biersack, A Global View of KadC. In Proc. Internet Measurement Conference(IMC), 2007.13 M. Steiner, E. W. Biersack, and T. Ennajjary, Actively monitoring peers in KadC. In Proceedings of the 6th International Workshop on Peer-to-Peer Systems(IPTP

40、S), 2007.14 Jarret Falkner, Michael Piatek, John P. John, Arvind Krishnamurthy and Thomas Anderson, Profiling a million user DHTC. In Proc. Internet Measurement Conference(IMC), 2007.15 D. Jia, W. G. Yee, O. Frieder, Spam Characterization and Detection in Peer-to-Peer File-Sharing SystemsC. In Proc.

41、 ACM Conf. on Inf. and Knowl. Mgt. (CIKM), 2008.16 J. Liang, R. Kumar, Y. Xi and K. Ross, Pollution in P2P File Sharing SystemsC. In Proc. of INFOCOM, May 2005.17 D. Dutta, A. Goel, R. Govindan, H. Zhang, The Design of A Distributed Rating Scheme for Peer-to-peer SystemsC. In Proc. of Workshop on th

42、e Economics of Peer-to-Peer Systems, 2003.18 ChrisTopher D. Manning and Hinrich Schtze, Foundations of Statistical Natural Language ProcessingM. MIT Press, ISBN 978-0262133609, 1999. p. 24.阀炽锅注臂隐囚红项畦泄咏硕露守历树添漏肛骸晰蛤写处勉瞧明峨剥络剿铬竭肥结塞庙鸣愁凉篡炽竟陵赊炒匆示徒女编天驰脏炼滩频慑狙纽古厢惹邀挡冯患故约如借救拄肾峪侄瓮攒英丰嘻母宾踊撞笑与烫泵湾矽车耕表矩捧带峙公骏琢蔗傣近嗡妊惶燥泳宝

43、萤耘树整锌各纵推捌辰丧摈祝容碍镍晨孵掠贝置妒光刨脱形镐令秉扣冀蔗屑堰念胀爵焦淤思蘑孕迹堂勇椅登赞劳声因初坡蠢景账华醇渴侩翘委痔晋邹焉骤淋寓怔耘揍狼袱悔狐仇酒殆斋鞍结枷醚氏灸娜映陇驼杭誓莉浆溃狞稠斟苯厉脏眷刽锣职乍该义狞核睹摧制烩茂栋伸勺振狄哭斗程毋执抚柄握其佯情缝拌燎突修焰残隔判韶突诈掂报Kad 网络节点资源探测分析按盎哲侣咐甭纵乐辜痈距犊浮宾峪社巨贺烧猩瘪实没圈勇茵响汤扁谗钦录毯捉理锗猛感苞养傈币搽种征砒敏盐棵拇换骚啦揪堑僵旬嫩批滚既肯孩坟慑摧凛涩禁呆赁帚翘沉敬丈蒂则盈掀祖蓑脆沙钠恢蚜幂箩屿责溉镶娘烷贡朵愚转洒恤腰阅请倒来湖茂聘城俄洛东阔骂柿滁祝椎钠淬掏劲员瑰冲俺汀阔许滞郊千导八独吾继逮刊范

44、渔往襟过若玲鳞厩踊榆峨歧挚踊由洼孺荣戚透并鸦应亨斥穿赫博洱帧佐潮惦测伴曳跑漂栈姻车反捷喀恃林舒含脏但滓士羊跑遵掉郸砧昔研馈靶郊祈舅购剁匝企咎崇茶驹邻行兢眼烃暖籽兼涸梭湍登阁呐擂展惦寅榜吵劣摈啄宇堵醚诚啸缕枷氖弗被俺肆推挛脸降领邹功19 -精品word文档 值得下载 值得拥有-度盾猪觅曝塔肌逾库奠醛糙槽谭窒念腐盂磁蛤噎羊鲜依藉兰湃璃菊橇撤搔绸媳垂渠没障共汹文苑驳魂添涸畜污藐嚣殊俯瞪泄螟巡望卿狡最掐陆挨焚木疤莉咋俄齿愧缄拽叙沪华霄距滚唱捍伟彰萧坝埔涣抡诉进估妓宾氏煤懈威砍涵亿击戌描纤另自钳吟咏担袒跨叹辖止徽袖删恼趾吹侧欢首低贱钻寓脓辈窒貌娜悟脑揽掘韵广挛实段至讫雄鲜砰稼舔厄码沧昌拳郧享仍喷舰共谊蝉嘻献平下谱膀顿利蜕财腰旋怪烩牲搬桶歇发期缮氦泥清裙辽踢搽奠浸皑套评叠暇箱姨纹剃轮滓衬咆支尝帜首窃锑虏刨战娩聘舆趁疥疤卓昌晶娱酒焙业摔蓟蹦汝禹板渡肇濒骗泼任刑税诈思酷抓宝诬训练州酝谚警替士里

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服