资源描述
人教版中学七7年级下册数学期末质量监测卷附答案
一、选择题
1.9的算术平方根是()
A.-3 B.3 C. D.
2.下列现象中,( )是平移
A.“天问”探测器绕火星运动 B.篮球在空中飞行
C.电梯的上下移动 D.将一张纸对折
3.下列各点中,在第三象限的点是( )
A. B. C. D.
4.下列四个命题是真命题的是( )
A.两条直线被第三条直线所截,同位角相等
B.互补的两个角一定是邻补角
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.相等的角是对顶角
5.若的两边与的两边分别平行,且,那么的度数为( )
A. B. C.或 D.或
6.下列结论正确的是( )
A.的平方根是 B.没有立方根
C.立方根等于本身的数是0 D.
7.如图,,,则的大小是( )
A. B. C. D.
8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( )
A.(6,4) B.(6,5) C.(7,3) D.(7,5)
九、填空题
9.若,则______.
十、填空题
10.已知点与点关于轴对称,那么________.
十一、填空题
11.如图,已知OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,△ADE的周长为12,BC长为5,则△ABC的周长__.
十二、填空题
12.将一条长方形纸带按如图方式折叠,若,则的度数为________°.
十三、填空题
13.将一张长方形纸条ABCD沿EF折叠后,EC′交AD于点G,若∠FGE=62°,则∠GFE的度数是___.
十四、填空题
14.实数a、b在数轴上所对应的点如图所示,则|﹣b|+|a+|+的值_____.
十五、填空题
15.如图,已知,,第四象限的点到轴的距离为3,若,满足,则与轴的交点坐标为__________.
十六、填空题
16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中x的值
(1)81x2 =16
(2)
十九、解答题
19.完成下列证明过程,并在括号内填上依据.
如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.
证明:∵∠1=∠2(已知),∠1=∠4
∴∠2= (等量代换),
∴ ∥BF( ),
∴∠3=∠ ( ).
又∵∠B=∠C(已知),
∴∠3=∠B
∴AB∥CD( ).
二十、解答题
20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,
(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;
(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.
二十一、解答题
21.一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
二十四、解答题
24.(感知)如图①,,求的度数.小明想到了以下方法:
解:如图①,过点作,
(两直线平行,内错角相等)
(已知),
(平行于同一条直线的两直线平行),
(两直线平行,同旁内角互补).
(已知),
(等式的性质).
(等式的性质).
即(等量代换).
(探究)如图②,,,求的度数.
(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.
二十五、解答题
25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;
①若∠B=90°则∠F= ;
②若∠B=a,求∠F的度数(用a表示);
(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据算术平方根的概念可直接进行求解.
【详解】
解:∵,
∴9的算术平方根是3;
故选B.
【点睛】
本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键.
2.C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不
解析:C
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.
【详解】
解:A. “天问”探测器绕火星运动不是平移,故此选项不符合题意;
B. 篮球在空中飞行不是平移,故此选项不符合题意;
C. 电梯的上下移动是平移,故此选项符合题意;
D. 将一张纸对折不是平移,故此选项不符合题意
故选:C.
【点睛】
本题考查平移的概念,与实际生活相联系,注意分清与旋转、翻转的区别.
3.D
【分析】
应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标.
【详解】
解:∵第三象限的点的横坐标是负数,纵坐标也是负数,
∴结合选项符合第三象限的点是(-2,-4).
故选:D.
【点睛】
本题主要考查了点在第三象限内点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可.
【详解】
解:A、两条平行的直线被第三条直线所截,同位角相等,
原命题错误,是假命题,不符合题意;
B、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;
C、在同一平面内,垂直于同一条直线的两条直线互相平行,
原命题正确,是真命题,符合题意;
D、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意;
故选:C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理.
5.A
【分析】
根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.
【详解】
解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,
又∵∠B=∠A+20°,
∴∠A+20°=∠A,
∵此方程无解,
∴此种情况不符合题意,舍去;
当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;
又∵∠B=∠A+20°,
∴∠A+20°+∠A=180°,
解得:∠A=80°;
综上所述,的度数为80°,
故选:A.
【点睛】
本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.
6.D
【分析】
根据平方根与立方根的性质逐项判断即可得.
【详解】
A、,8的平方根是,此项错误;
B、,此项错误;
C、立方根等于本身的数有,此项错误;
D、,
,此项正确;
故选:D.
【点睛】
本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键.
7.D
【分析】
根据同位角相等,两直线平行即可求解.
【详解】
解:如图:
因为,∠1=60°,
所以∠3=∠1=60°.
因为∠2+∠3=180°,
所以∠2=180°-60°=120°.
故选:D.
【点睛】
本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.
8.A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详
解析:A
【分析】
横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.
【详解】
解:把第一个点作为第一列,和作为第二列,
依此类推,则第一列有一个数,第二列有2个数,
第列有个数.则列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.
因为,则第20个数一定在第6列,由下到上是第4个数.
因而第20个点的坐标是.
故选:A.
【点睛】
本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.
九、填空题
9.1
【分析】
根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
【详解】
解:根据题意得,a-3=0,b+2=0,
解得a=3,b= -2,
所以3+(-2)=1.
故答案为1.
解析:1
【分析】
根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.
【详解】
解:根据题意得,a-3=0,b+2=0,
解得a=3,b= -2,
所以3+(-2)=1.
故答案为1.
【点睛】
本题考查平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.
十、填空题
10.0;
【分析】
平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.
【详解】
解:根据对称的性质,得,
解得.
故答案为:0.
【点睛】
考查了关于轴、轴对称的点的坐标,
解析:0;
【分析】
平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.
【详解】
解:根据对称的性质,得,
解得.
故答案为:0.
【点睛】
考查了关于轴、轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.
十一、填空题
11.17
【详解】
∵0B、OC为△ABC的角平分线,
∴∠ABO=∠OBC,∠ACO=∠BCO,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠ABO=∠DOB,∠ACO=∠EOC,
解析:17
【详解】
∵0B、OC为△ABC的角平分线,
∴∠ABO=∠OBC,∠ACO=∠BCO,
∵DE∥BC,
∴∠DOB=∠OBC,∠EOC=∠OCB,
∴∠ABO=∠DOB,∠ACO=∠EOC,
∴BD=OD,EC=OE,
∴DE=OD+OE=BD+EC;
∵△ADE的周长为12,
∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,
∵BC=7,
∴△ABC的周长为:AB+AC+BC=12+5=17.
故答案为17.
十二、填空题
12.36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
解析:36
【分析】
根据平行线的性质、折叠的性质即可解决.
【详解】
∵AB∥CD,如图
∴∠GEC=∠1=108゜
由折叠的性质可得:∠2=∠FED
∵∠2+∠FED+∠GEC=180゜
∴∠2=
故答案为:36
【点睛】
本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质.
十三、填空题
13.59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿
解析:59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿EF折叠,
∴∠1=∠2,AD∥BC,
∴∠FGE+∠GEC=180°,
∵∠FGE=62°,
∴∠GEC=180°-62°=118°,
∴∠1=∠2=∠GEC=59°,
∵AD∥BC,
∴∠GFE=∠2,
∴∠GFE=59°.
故答案为59°.
【点睛】
本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键.
十四、填空题
14.﹣2a﹣b
【分析】
直接利用数轴结合绝对值以及平方根的性质化简得出答案.
【详解】
解:由数轴可得:a<﹣,0<b<,
故|﹣b|+|a+|+
=﹣b﹣(a+)﹣a
=﹣b﹣a﹣﹣a
=﹣2a﹣b
解析:﹣2a﹣b
【分析】
直接利用数轴结合绝对值以及平方根的性质化简得出答案.
【详解】
解:由数轴可得:a<﹣,0<b<,
故|﹣b|+|a+|+
=﹣b﹣(a+)﹣a
=﹣b﹣a﹣﹣a
=﹣2a﹣b.
故答案为:﹣2a﹣b.
【点睛】
此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.
十五、填空题
15.【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直
解析:
【分析】
根据二次根式的非负性、绝对值的非负性求出a,b,再求出直线BC的解析式即可得解;
【详解】
∵、都有意义,
∴,
∴,
∴,
∴,
∵第四象限的点到轴的距离为3,
∴C点的坐标为,
设直线BC的解析式为,
把,代入得:
,
解得:,
故BC的解析式为,
当时,,
故与轴的交点坐标为;
故答案是.
【点睛】
本题主要考查了用待定系数法求一次函数解析式、绝对值的非负性、、坐标与图形的性质,准确计算是解题的关键.
十六、填空题
16.(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐
解析:(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.
【详解】
解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于直线上最右边的点的横坐标的平方,
例如:右下角的点的横坐标为1,共有1个,,
右下角的点的横坐标为2时,如下图点,共有4个,,
右下角的点的横坐标为3时,共有9个,,
右下角的点的横坐标为4时,如下图点,共有16个,,
右下角的点的横坐标为时,共有个,
,45是奇数,
第2025个点是,
,
点是向上平移4个单位,
第2021个点是.
故答案为:.
【点睛】
本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.
十七、解答题
17.(1)-3;(2)-11.
【分析】
(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;
(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.
【详解】
(1)解:原式=
(2)解
解析:(1)-3;(2)-11.
【分析】
(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;
(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案.
【详解】
(1)解:原式=
(2)解:原式
=
=.
【点睛】
本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键.
十八、解答题
18.(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
解析:(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
【点睛】
本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法.
十九、解答题
19.∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=
解析:∠4;CE;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
【分析】
根据平行线的判定和性质解答.
【详解】
解∵∠1=∠2(已知),∠1=∠4(对顶角相等),
∴∠2=∠4(等量代换),
∴CE∥BF(同位角相等,两直线平行),
∴∠3=∠C (两直线平行,同位角相等).
又∵∠B=∠C(已知),
∴∠3=∠B(等量代换),
∴AB∥CD(内错角相等,两直线平行).
故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.
【点睛】
此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.
二十、解答题
20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(
解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(2)分别作出A′,B′,C′即可解决问题.
【详解】
解:(1)平面直角坐标系如图所示:B(0,1).
(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).
【点睛】
本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十一、解答题
21.【分析】
根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.
【详解】
∵一个正数的两个平方根为和,
∴,
解得:,
∵是的立方根,
∴,
解得:,
∵,
解析:
【分析】
根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案.
【详解】
∵一个正数的两个平方根为和,
∴,
解得:,
∵是的立方根,
∴,
解得:,
∵,
∴的整数部分是6,则小数部分是:,
∴,
∴的平方根为:.
【点睛】
本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
二十四、解答题
24.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
二十五、解答题
25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC
解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.
【分析】
(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;
(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.
【详解】
解:(1)①∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,
故答案为45°;
②∵AD平分∠CAE,CF平分∠ACB,
∴∠CAD=∠CAE,∠ACF=∠ACB,
∵∠CAE是△ABC的外角,
∴∠B=∠CAE﹣∠ACB,
∵∠CAD是△ACF的外角,
∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;
(2)由(1)可得,∠F=∠ABC,
∵∠AGB与∠GAB的角平分线交于点H,
∴∠AGH=∠AGB,∠GAH=∠GAB,
∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,
∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,
∴∠F+∠H的值不变,是定值180°.
【点睛】
本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.
展开阅读全文