1、人教版七年级数学下册期末考试题含答案一、选择题1一个有理数的平方等于,则这个数是()AB或CD2下列各组图形可以通过平移互相得到的是()ABCD3在平面直角坐标系中,点位于( )A第一象限B第二象限C第三象限D第四象限4下列说法中,错误的个数为( )两条不相交的直线叫做平行线;过一点有且只有一条直线与已知直线平行;在同一平面内不平行的两条线段一定相交;两条直线与第三条直线相交,那么这两条直线也相交A1个B2个C3个D4个5如图,直线,三角板的直角顶点在直线上,已知,则等于( )A25B55C65D756下列命题正确的是()A若ab,bc,则acB若ab,bc,则acC49的平方根是7D负数没有
2、立方根7如图,直线lm,等腰RtABC中,ACB90,直线l分别与AC、BC边交于点D、E,另一个顶点B在直线m上,若128,则2()A75B73C62D178如图,动点在平面直角坐标系中,按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,按这样的运动规律,经过第2021次运动后,动点的坐标是( )ABCD九、填空题9若|y+6|+(x2)2=0,则y x=_十、填空题10已知点的坐标是,且点关于轴对称的点的坐标是,则_十一、填空题11如图,BE是ABC的角平分线,AD是ABC的高,ABC=60,则AOE=_十二、填空题12如图,设,那么
3、,的关系式_十三、填空题13如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则_十四、填空题14实数a、b在数轴上所对应的点如图所示,则|b|+|a+|+的值_十五、填空题15点P(2a,23a)是第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是_十六、填空题16在平面直角坐标系中,已知点A(4,0),B(0,3),对AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4),那么第(2013)个三角形的直角顶点坐标是_十七、解答题17计算下列各式的值:(1) (2)十八、解答题18求下列各式中的x值:(1)169x2144;(2)(x2)
4、2360.十九、解答题19补全下面的证明过程和理由:如图,AB和CD相交于点O,EFAB,CCOA,DBOD求证:AF证明:CCOA,DBOD,( )又COABOD,( )C ( )ACDF( )A ( )EFAB,F ( )AF( )二十、解答题20如图,三角形在平面直角坐标系中(1)请写出三角形各点的坐标;(2)求出三角形的面积;(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形二十一、解答题21数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非
5、常难的,但我们可以用1表示它的小数部分”王老师说:“小明同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:的整数部分是 ;小数部分是 (2)已知8+x+y,其中x是一个整数,且0y1,求出2x+(y-)2012的值二十二、解答题22如图,阴影部分(正方形)的四个顶点在55的网格格点上(1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值二十三、解答题23已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且
6、,求的度数;(3)如图4中,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数二十四、解答题24将两块三角板按如图置,其中三角板边,(1)下列结论:正确的是_如果,则有;如果,则平分(2)如果,判断与是否相等,请说明理由(3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数二十五、解答题25如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1CD-A1BD=(ACD-AB
7、D)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值【参考答案】一、选择题1B解析:B【分析】根据一个数a,如果,那么a就叫做b的平方根求解即可【详解】解:,36的平方根为6
8、或-6,故选B【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义2C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键解析:C【分析】根据平移不改变图形的形状和大小,进而得出答案【详解】解:观察图形可知选项C中的图案通过平移后可以得到故选:C【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键3B【分析】根据平面直角坐标系的四个象限内的坐标特征回答即可【详解】解:解:在平面直角坐标系中,点P(2,1)位于第二象限,故选:B【点睛】本题考查了点的坐标
9、,横坐标小于零,纵坐标大于零的点在第二象限4D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案【详解】在同一平面内,两条不相交的直线叫做平行线,故本小题错误,过直线外一点有且只有一条直线与已知直线平行,故本小题错误,在同一平面内不平行的两条直线一定相交;故本小题错误,两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误综上所述:错误的个数为4个故选D【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键5C【分析】利用平行线的性质,可证得2=3,利用已知可证得1+3=90,求出3的度数,进而求出2的度数
10、【详解】解:如图a/b2=3,1+3=180-90=903=90-1=90-25=652=65故选C【点睛】本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键6B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答【详解】选项A,由ab,bc,则ac,可得选项A错误;选项B, 若ab,bc,则ac,正确;选项C,由49的平方根是7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答7B【分析】如图标注字母M,首先根据等腰直角三角形的性质得
11、出,再利用平行线的性质即可得出2的度数【详解】解:如图标注字母M,ABC是等腰直角三角形,又lm,故选:B【点睛】本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补8D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:由图可知:横坐标1,2,3,4依解析:D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0,每4次一轮这一规律,进而
12、求出即可【详解】解:由图可知:横坐标1,2,3,4依次递增,则第2021个点的横坐标为2021;纵坐标2,0,1,0,2,0,1,04个一循环,20214=5051,经过第2021次运动后,P(2021,2)故选D【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键九、填空题936【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36解析:36【解析】由题意得,y+6=0,x2=0,解得x=2,y=6,所以,yx=(6)2=36故答案是:36十、填空题10-3 1 【分析】平面内关于x轴对
13、称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1解析:-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数十一、填空题1160【分析】先根据角平分线的定义求出DOB的度数,再由三角形外角的性质求出BOD的度数
14、,由对顶角相等即可得出结论.【详解】BE是ABC的角平分线,ABC60,DOBA解析:60【分析】先根据角平分线的定义求出DOB的度数,再由三角形外角的性质求出BOD的度数,由对顶角相等即可得出结论.【详解】BE是ABC的角平分线,ABC60,DOBABC6030,AD是ABC的高,ADC90,ADC是OBD的外角,BODADCOBD903060,AOEBOD60,故答案为60.【点睛】本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和.十二、填空题12【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】
15、本题考查了平解析:【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;十三、填空题135【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FE解析:5【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FED,又EFB=45,B
16、=90,BEF=45,DEC=(180-45)=67.5故答案为:67.5【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键十四、填空题142ab【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a,0b,故|b|+|a+|+b(a+)abaa2ab解析:2ab【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a,0b,故|b|+|a+|+b(a+)abaa2ab故答案为:2ab【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键十五、填空题15(-4,8)【分析】根据第二象限内点的横坐标
17、是负数,纵坐标是正数列出方程求出a,即可得解【详解】解:点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解【详解】解:点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,-2a+2-3a=12,解得a=-2,2a=-4,2-3a=8,点P的坐标为(-4,8)故答案为:(-4,8)【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-)
18、;第四象限(+,-)十六、填空题16(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解解析:(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】解:点A(4,0),B(0,3),OA4,OB3,AB5,第(3)个三角形的直角顶点的坐标是;观察图形不难发现,每3个三角形为一个循环组依次循环,一次循环横坐标增加12,20133
19、671第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,第(2013)个三角形的直角顶点的坐标是即故答案为:【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键十七、解答题17(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并
20、即可【详解】解:(1) (2) 【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键十八、解答题18(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.解析:(1)x;(2)x8或x4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解【详解】解:(1)169x2144,移项得:x2,解得:x.(2)(x2)2360,移项得:(x2)236,开方得:x-2=6或x-2=-6解得:x8或x4.故答案为(1)x;(2)x8或
21、x4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.十九、解答题19见解析【分析】根据对顶角相等结合已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=COA,D=BOD(已知),解析:见解析【分析】根据对顶角相等结合已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=COA,D=BOD(已知),又COA=BOD(对顶角相等),C=D(等量代换)ACDF(内错角相等,两直线平行)A=ABD(两直线平行,内错角相等)EFAB,F=ABD(两直线平行,内错角相等)A=F(等
22、量代换)故答案为:已知,对顶角相等;D,等量代换;内错角相等,两直线平行;ABD,两直线平行,内错角相等;ABD,两直线平行,同位角相等,等量代换【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键二十、解答题20(1),;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;(3)根据点的平移规则,求得三点坐标解析:(1),;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;(3)根据点的平
23、移规则,求得三点坐标,连接对应线段即可【详解】解:(1)根据平面直角坐标系中点的位置,可得:,;(2)三角形的面积;(3)三角形向上平移2个单位,再向左平移1个单位得到三角形可得,连接,三角形如图所示:【点睛】此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键二十一、解答题21(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答【详解】解:(1)12,的整数部分是1;小解析:(1)1;-1(2)19【分析】(1)根据已知的条件就可以求出;(2)先估算的范围,进一步
24、确定8+的范围,即可求出x,y的值,即可解答【详解】解:(1)12,的整数部分是1;小数部分是-1;(2)解:12,98+10,8+x+y,且x是一个整数,0y1,x9,y8+91,2x+(y-)2012=29+(1-)2012=18+1=19【点睛】本题考查了估算无理数的大小,解决本题的关键是估算的范围二十二、解答题22(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案解析:(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个
25、直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案详解:解:(1)S=25-12=13, 边长为 ,(2)a=3,b= -3 原式=9+-3-=6点睛:本题主要考查的就是无理数的估算,属于中等难度的题型解决这个问题的关键就是根据正方形的面积得出边长二十三、解答题23(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质解析:(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1
26、)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BMEEND)BMFFND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFM
27、FNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义
28、,作辅助线是解题的关键二十四、解答题24(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断解析:(1);(2)相等,理由见解析;(3)30或45或75或120或135【分析】(1)根据平行线的判定和性质分别判定即可;(2)利用角的和差,结合CAB=DAE=90进行判断;(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到EAB角度所有可能的值【详解】解:(1)BFD=60,B=45,BAD+D=BFD+B=105,BAD=105-30=75,BADB,BC和A
29、D不平行,故错误;BAC+DAE=180,BAE+CAD=BAE+CAE+DAE=180,故正确;若BCAD,则BAD=B=45,BAE=45,即AB平分EAD,故正确;故答案为:;(2)相等,理由是:CAD=150,BAE=180-150=30,BAD=60,BAD+D=BFD+B,BFD=60+30-45=45=C;(3)若ACDE,则CAE=E=60,EAB=90-60=30;若BCAD,则B=BAD=45,EAB=45;若BCDE,则E=AFB=60,EAB=180-60-45=75;若ABDE,则D=DAB=30,EAB=30+90=120;若AEBC,则C=CAE=45,EAB=4
30、5+90=135;综上:EAB的度数可能为30或45或75或120或135【点睛】本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题二十五、解答题25(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得A
31、CD=A+ABC,A1CD=A1BC+A1,整理即可得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE)
32、,利用三角形内角和定理表示出QEC+QCE,即可得到A1和Q的关系【详解】解:(1)当A为70时,ACD-ABD=A,ACD-ABD=70,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A2=80,A2=20,A=2nAn,故答案为:A=2An(3)ABC+DCB=360-(A+D),ABC+(180
33、-DCE)=360-(A+D)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=180【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要