收藏 分销(赏)

人教版八年级数学下册期末试卷综合测试(Word版含答案).doc

上传人:天**** 文档编号:1845739 上传时间:2024-05-10 格式:DOC 页数:30 大小:976.54KB
下载 相关 举报
人教版八年级数学下册期末试卷综合测试(Word版含答案).doc_第1页
第1页 / 共30页
人教版八年级数学下册期末试卷综合测试(Word版含答案).doc_第2页
第2页 / 共30页
人教版八年级数学下册期末试卷综合测试(Word版含答案).doc_第3页
第3页 / 共30页
人教版八年级数学下册期末试卷综合测试(Word版含答案).doc_第4页
第4页 / 共30页
人教版八年级数学下册期末试卷综合测试(Word版含答案).doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、人教版八年级数学下册期末试卷综合测试(Word版含答案)一、选择题1下列式子中不一定是二次根式的是( )ABCD2下列三条线段不能组成直角三角形的是( )Aa=5,b=12,c=13Ba=6,b=8,c=10CDa:b:c=2:3:43如图所示,在中,点E,D,F分别在边上,且下列判断中,不正确的是( )A四边形是平行四边形B如果,那么四边形是矩形C如果平分,那么四边形是菱形D如果,那么四边形是菱形4为了了解某校学生的课外阅读情况,随机抽查了10名学生一周阅读用时数,结果如下表,则关于这10名学生周阅读所用时间,下列说法中正确的是( )周阅读用时数(小时)45812学生人数(人)3421A中位

2、数是6.5B众数是12C平均数是3.9D方差是65如图,菱形的边长为2,点是边的中点,点是对角线上一动点,则周长的最小值是( )ABCD6如图,在菱形中,与相交于点,的垂直平分线分别交,于点,连接,若,则的度数是( )A60B75C80D1107如图,在正方形ABCD中,E为AB中点,连结DE,过点D作DFDE交BC的延长线于点F,连结EF若AE2,则EF的值为( )A6BCD58如图,矩形ABCD中,对角线AC、BD相交于点O,AOB=60,AB=5,则AD的长是( )A5B5C5D10二、填空题9若代数式有意义,则实数的取值范围是_10如图,菱形ABCD的对角线AC、BD的长分别为3cm和

3、4cm,则其面积是_cm2.11如图,每个小正方形的边长都为1,则的三边长,的大小关系是_(用“”连接)12如图,在矩形ABCD中,点E是对角线AC上一点,CBCE,ACB30,则ABE_13在平面直角坐标系中,一次函数ykx+b的图象与直线y2x平行,且经过点A(1,6),则一次函数ykx+b的解析式为 _14如图,在ABC中,ADBC于点D,点E,F分别是A4BAC边的中点,请你在ABC中添加一个条件:_使得四边形AEDF是菱形15如图,在平面直角坐标系中,点,都在轴正半轴上,点,都在直线上,都是等边三角形,且,则点的横坐标是_16如图,在矩形中,沿直线折叠,使点与点重合,折痕交于点,交于

4、点,连接,则_三、解答题17计算(1) (2) (3)18有一架米长的梯子搭在墙上,刚好与墙头对齐,此时梯脚与墙的距离是米 (1)求墙的高度? (2)若梯子的顶端下滑米,底端将水平动多少米?19如图,正方形网格中的ABC,若小方格边长为1 (1)判断ABC是什么形状?并说明理由(2)求AC边上的高20如图,ABC中,BCA90,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE(1)求证:四边形ADCE是菱形;(2)若B60,BC6,求四边形ADCE的面积21先化简,再求值:a+,其中a1007如图是小亮和小芳的解答过程(1) 的解法是错误的;

5、(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:a+2,其中a201822在乡村道路建设过程中,甲、乙两村之间需要修建水泥路,甲、乙两村合作完成已知甲村需要水泥70吨,乙村需要水泥110吨,A厂可提供100吨水泥,B厂可提供80吨水泥,两厂到两村的运费如表:目的地运费/(元/吨)甲村乙村A厂240180B厂250160(1)设从A厂运往甲村水泥x吨,求运送的总费用y(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围;(2)请你设计出运费最低的运送方案,并求出最低运费23如图1,在平面直角坐标系xOy中,直线l1:yx+6交x轴于点A,交y轴于点B,经过点B的

6、直线l2:ykx+b交x轴于点C,且l2与l1关于y轴对称(1)求直线l2的函数表达式;(2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针度后得到线段DF如图2,当点D的坐标为(2,m),45,且点F恰好落在线段BC上时,求线段AE的长;如图3,当点D的坐标为(1,n),90,且点E恰好和原点O重合时,在直线y3上是否存在一点G,使得DGFDGO?若存在,直接写出点G的坐标;若不存在,请说明理由24如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴正半轴于,且面积为10(1)求点的坐标及直线的解析式;(2)如图,设点为线段中点,点为轴上一动点,连接,以为边向右侧

7、作正方形,在点的运动过程中,当顶点落在直线上时,求点的坐标;(3)如图2,若为线段的中点,点为直线上一动点,在轴上是否存在点,使以点,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由25已知,如图,在三角形中,于,且点从点出发,沿方向匀速运动,速度为;同时点由点出发,沿方向匀速运动,速度为,过点的动直线,交于点,连结,设运动时间为,解答下列问题:(1)线段_;(2)求证:;(3)当为何值时,以为顶点的四边形为平行四边形?26如图,ABC和ADE都是等腰三角形,其中ABAC,ADAE,BACDAE(1)如图,连接BE、CD,求证:BECD;(2)如图,连接BD、CD,

8、若BACDAE60,CDAE,AD3,CD5,求BD的长;(3)如图,若BACDAE90,且C点恰好落在DE上,试探究CD、CE和CA之间的数量关系,并加以说明【参考答案】一、选择题1C解析:C【分析】根据二次根式的性质即可判断【详解】、是二次根式,中的a可能为负数,故不一定是二次根式故选C【点睛】此题主要考查二次根式的识别,解题的关键是熟知二次根式的定义2D解析:D【分析】先求出两小边的平方和,再求出最长边的平方,看看是否相等即可【详解】解:A52+122=132,以a、b、c为边能组成直角三角形,故本选项不符合题意;B62+82=102,以a、b、c为边能组成直角三角形,故本选项不符合题意

9、;C()2+()2=()2,以a、b、c为边能组成直角三角形,故本选项不符合题意;D22+3242,以a、b、c为边不能组成直角三角形,故本选项符合题意;故选:D【点睛】本题考查了勾股定理的逆定理,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形3D解析:D【解析】【分析】由DECA,DFBA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形,据此可以判断A正确;又有BAC=90,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形,故可以判断B选项;如果AD平分BAC,那么EAD=FAD,又有DFBA,可得EAD=ADF,进

10、而知FAD=ADF,AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形;如果ADBC且当AB=AC时,那么AD平分BAC,则可得四边形AEDF是菱形,故知D选项不正确【详解】解:由DECA,DFBA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有BAC=90,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形故A、B正确;如果AD平分BAC,那么EAD=FAD,又有DFBA,可得EAD=ADF,FAD=ADF,AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,故C正确;如果ADBC且AB=AC,那么AD平分B

11、AC,可得四边形AEDF是菱形只有ADBC,不能判断四边形AEDF是菱形,故D选项错误故选:D【点睛】本题考查平行四边形、矩形及菱形的判定,具体选择哪种方法需要根据已知条件来确定,此题是道基础概念题,需要熟练掌握菱形的判定定理4D解析:D【解析】【分析】根据平均数,中位数,众数和方差的意义分别对每一项进行分析即可得出答案【详解】解:A、这10名学生周阅读所用时间从大到小排列,可得4、4、4、5、5、5、5、8、8、12,则这10名学生周阅读所用时间的中位数是:=5;B、这10名学生周阅读所用时间出现次数最多的是5小时,所以众数是5;C、这组数据的平均数是:(43+54+82+12)10=6;D

12、、这组数据的方差是:(4-6)2+(4-6)2+(4-6)2+(5-6)2+(5-6)2+(5-6)2+(5-6)2+(8-6)2+(8-6)2+(12-6)2=6;故选:D【点睛】本题考查了平均数,中位数,众数和方差的意义平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量5A解析:A【分析】连接BQ,BD,当P,Q,B在同一直线上时,DQPQ的最小值等于线段BP的长,依据勾股定理求得BP的长,即可得出DQPQ的最小值,进而得出DPQ周长的最小值【详

13、解】解:如图所示,连接BQ,BD,点Q是菱形对角线AC上一动点,BQDQ,DQPQBQPQ,当P,Q,B在同一直线上时,BQPQ的最小值等于线段BP的长,四边形ABCD是菱形,BAD60,BAD是等边三角形,又P是AD的中点,BPAD,APDP1,RtABP中,ABP30,APAB1,BP,DQPQ最小值为,又DP1,DPQ周长的最小值是,故选:A【点睛】本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点6B解析:B【解析】【分析】连接BF,由菱形的性质得DCF=BCF=35,AC垂直平分BD,AD

14、BC,再由线段垂直平分线的性质得BF=DF,BF=CF,则DF=CF,得CDF=DCF=35,然后求出ADC=110,求解即可【详解】解:连接BF,如图所示:四边形ABCD是菱形,DCF=BCF=BCD=35,AC垂直平分BD,ADBC,BF=DF,EF是BC的垂直平分线,BF=CF,DF=CF,CDF=DCF=35,ADBC,ADC+BCD=180,ADC=180-70=110,ADF=110-35=75,故选:B【点睛】本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质以及平行线的性质等知识;熟练掌握菱形的性质,证出DF=CF是解题的关键7B解析:B【解析】【分析】根据“ASA”

15、判定ADECDF,可证DE=DF,在RtADE中,运用勾股定理求出DE的长度,再在RtDEF中,运用勾股定理即可求出EF的长【详解】解:四边形ABCD是正方形,AD=AB=BC=CD,A=ADC=DCB=B=90,DFDE,ADE+EDC=CDF+EDC=90,即ADE=CDF,在ADE和CDF中,ADECDF(ASA),DE=DF,E为AB的中点,AE=2,AD=AB=4,在RtADE中,DE,在RtDEF中,EF故选:B【点睛】本题主要考查了正方形的性质和勾股定理的应用,求线段的长度常常是把线段转化到直角三角形中,运用勾股定理进行计算求值8A解析:A【分析】根据矩形的性质可得AOB是等边三

16、角形,可得BD的长度,再根据勾股定理求解即可【详解】解:因为在矩形ABCD中,AOACBDBO,又因为AOB60,所以AOB是等边三角形,所以AOAB5,所以BD2AO10,所以AD2BD2AB21025275,所以AD5故选:A【点睛】本题考查了矩的性质、等边三角形的判定和性质以及勾股定理等知识,属于基本题型,熟练掌握上述知识是解题的关键二、填空题9且【解析】【分析】根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案【详解】解:由题意得,x+20,x0,解得,x-2且x0,故答案为:x-2且x0【点睛】本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中

17、的被开方数是非负数、分式分母不为0是解题的关键10A解析:6【解析】【分析】直接根据菱形的面积等于其对角线积的一半,即可求得面积【详解】解:菱形ABCD的对角线AC、BD的长分别为3cm和4cm(cm)故答案为:6【点睛】此题主要考查菱形的性质,熟练掌握性质是解题关键11;【解析】【分析】观察图形根据勾股定理分别计算出a、b、c,根据二次根式的性质即可比较a、b、c的大小【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:,即,故答案为:【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a、b、c的值是解题的关键12E解析:15【分析】利用等腰三角形的的性质求得EBC的度

18、数,再由矩形的性质可得【详解】解:ACB30,CBCE,EBC(180ECB)(18030)75,矩形ABCD,ABC90,ABE90EBC15,故答案为:15【点睛】本题考查了矩形的性质和等要三角形的性质,解决这类问题关键是熟练掌握矩形的性质13A解析:y2x+4【分析】根据函数ykx+b的图象与直线y2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式【详解】解:函数ykx+b的图象与直线y2x平行,k2,又函数y2x+b的图象经过点A(1,6),62+b,b4,一次函数的解析式为y2x+4,故答案为y2x+4【点睛】本题考查了一次函数的性质,待定系数法求解析式,理解两条

19、直线平行,解析式中的值相等是解题的关键14A解析:AB=AC(或B=C,或BD=DC)【分析】可根据三角形的中位线定理、等腰三角形的性质、菱形的判定,分析得出当ABC满足条件AB=AC或B=C时,四边形AEDF是菱形【详解】解:要使四边形AEDF是菱形,则应有DE=DF=AE=AF,E,F分别为AC,BC的中点AE=BE,AF=FC,应有DE=BE,DF=CF,则应有BDECDF,应有BD=CD,当点D应是BC的中点,而ADBC,ABC应是等腰三角形,应添加条件:AB=AC或B=C则当ABC满足条件AB=AC或B=C时,四边形AEDF是菱形故答案为:AB=AC(或B=C,或BD=DC)【点睛】

20、本题考查了菱形的判定,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论15【分析】设的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,从而得出,由点的坐标为,得到,即可解决问题【详解】解:过作轴于,过作轴于,过作轴于,如图解析:【分析】设的边长为,根据直线的解析式得出,再结合等边三角形的性质及外角的性质即可得出,从而得出,由点的坐标为,得到,即可解决问题【详解】解:过作轴于,过作轴于,过作轴于,如图所示:设的边长为,则,点,是直线上的第一象限内的

21、点,又为等边三角形,点的坐标为,点的横坐标为,故答案为:【点睛】本题考查了一次函数的性质、等边三角形的性质、规律型、以及三角形外角的性质等,解题的关键是找出规律16【分析】先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可【详解】解:如图,过点E作EGBC于G,由折叠的性质可知,CF=AF,解析:【分析】先证明得到AE=CE,再证明AF=AE=CE,利用勾股定理求出cm ,然后求出cm,cm 由此求解即可【详解】解:如图,过点E作EGBC于G,由折叠的性质可知,CF=AF,AFE=EFC,AE=CE四边形ABCD是矩形,B=BCD=D=90,

22、ADBC,cm,AEF=EFC,AEF=AFE,AF=AE=CE,设AF=CF=x,则BF=4-x,解得,cm,EGCG,EGC=D=GCD=90,四边形EGCD是矩形,cm,cm ,cm,cm ,故答案为:【点睛】本题主要考查了矩形的性质与判定,勾股定理,折叠的性质,等腰三角形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解三、解答题17(1);(2);(3)【分析】(1)根据二次根式乘法法则计算即可;(2)根据二次根式运算法则进行计算即可;(3)利用完全平方公式和平方差公式计算即可【详解】解:(1)原式,解析:(1);(2);(3)【分析】(1)根据二次根式

23、乘法法则计算即可;(2)根据二次根式运算法则进行计算即可;(3)利用完全平方公式和平方差公式计算即可【详解】解:(1)原式, (2)原式 , (3)原式;【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行计算.18(1)4米;(2)1米【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的解析:(1)4米;(2)1米【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高

24、度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离【详解】解:(1)根据勾股定理:墙的高度(米;(2)梯子下滑了1米,即梯子距离地面的高度(米根据勾股定理:(米则(米,即底端将水平动1米答:(1)墙的高度是4米;(2)若梯子的顶端下滑1米,底端将水平动1米【点睛】本题考查了勾股定理的应用,要求熟练掌握利用勾股定理求直角三角形边长19(1)ABC是直角三角形理由见解析;(2)【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)ABC是直角三角形理解析:(1)ABC是直角三角形理由见解析;(

25、2)【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)ABC是直角三角形理由如下:由题意可得,AB,BC,AC,AB2+BC2AC2,B90,ABC是直角三角形;(2)设AC边上的高为hSABCAChABBC,h【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.20(1)见解析;(2)【分析】(1)先根据已知条件,证明四边形DBCE是平行四边形,可得ECAB,且ECDB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相解析:(1)见解析;(2)【分析】

26、(1)先根据已知条件,证明四边形DBCE是平行四边形,可得ECAB,且ECDB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相等的平行四边形是菱形即可得证;(2)根据已知条件可得是等边三角形,进而求得,根据,进而根据菱形的性质求得面积【详解】(1)证明:DEBC,ECAB,四边形DBCE是平行四边形ECAB,且ECDB在RtABC中,CD为AB边上的中线,ADDBCDECAD四边形ADCE是平行四边形四边形ADCE是菱形(2)解:RtABC中,CD为AB边上的中线,B60,BC6,是等边三角形ADDBCD6AB12,由勾股定理得四边形DBCE是平行四边形,D

27、EBC6菱形【点睛】本题考查了菱形的性质与判定,直角三角形斜边上的中线等于斜边的一半,勾股定理,等边三角形的性质与判定,掌握以上知识是解题的关键21(1)小亮(2)=-a(a0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的;(2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2)=-a(a0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的;(2)错误原因是:二次根式的性质=|a|的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算

28、即可.试题解析:(1)小亮(2)=-a(a0)(3)原式a+2a+2(3-a)6-a=6-(-2018)2024.22(1)y30x+37100(0x70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元【分析】(1解析:(1)y30x+37100(0x70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元【分析】(1)由从A厂运往甲村水泥x吨,根据题意首先求得从A厂运往乙村水泥(100-x)吨,B厂运往甲村水泥(70-x)

29、吨,B厂运往乙村水泥吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式; (2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最低运费【详解】(1)设从A厂运往甲村水泥x吨,则A厂运往乙村水泥(100x) 吨,B厂运往甲村水泥(70x)吨,B厂运往乙村水泥110(100x)(10+x)吨,y240x+180(100x)+250(70x)+160(10+x)30x+37100,x的取值范围是0x70,y30x+37100(0x70);(2)y30x+37100(0x70),300,y随x的增大而减小,0x70,当x70时,总费用最低,最低运费

30、为:3070+3710035000 (元),最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元【点睛】本题主要考查了一次函数的实际应用问题,解决本题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解23(1)y=-x+6;(2);,或或,【分析】(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2解析:(1)y=-x+6;(2);,或或,【分析】(1)先求出点A,B的坐标,再运用待定系数法求出直线直线l2的

31、函数解析式;(2)将点D(-2,m)代入y=x+6中,求出D(-2,4),如图2,作DHF=45,利用AAS证明ADEHFD,再运用等腰直角三角形性质即可求出答案;将D(-1,n)代入y=x+6中,得D(-1,5),过D作DMx轴于M,作FNDM于N,如图3,利用AAS可证得FDNDEM,进而得出F(4,6),再根据DGF=DGO分类讨论即可【详解】解:(1)交轴于点,交轴于点,与关于轴对称,设直线为:,将、坐标代入得,解得,直线的函数解析式为:;(2)将点代入中,得:,解得:,如图2,作,在和中,又,和均为等腰直角三角形,是等腰直角三角形,将代入中,得:,则,过作轴于,作于,如图3,在和中,

32、当点、三点共线时,如图3,设直线的解析式为,解得:,直线的解析式为,当时,;如图4,连接DG2,FG2,过点D作DMOG2,DNFG2,DM=DN,又DO=DF,(HL),ODM=FDN,又ODN+FDN=90,ODM+ODN=90,即MDN=90,四边形DMG2N是正方形,OG2F=90,设,解得:,;当平分时,如图5,又,设与交于点,设直线解析式为,解得:,直线解析式为,联立方程组,解得:,;综上所述,符合条件的的坐标为,或或,【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角

33、形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键24(1),;(2)或;(3)存在,或或【解析】【分析】(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题(2)设G(0,n)分两种情形:当时,如图中,点落在上时,过作直线解析:(1),;(2)或;(3)存在,或或【解析】【分析】(1)利用三角形的面积公式求出点坐标,再利用待定系数法即可解决问题(2)设G(0,n)分两种情形:当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,求出当时,如图中,同法可得,利用待定系数法即可解决问题(3)由,得,即得直线为,设,以

34、、为对角线,此时、中点重合,而中点为,中点为,即得,解得;以、为对角线,同理可得:;以、为对角线,同理【详解】解:(1)直线与轴交于点,与轴交于点,设直线的解析式为,则有,解得,直线的解析式为;(2),设,当时,如图中,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,四边形是正方形,而,点在直线上,;当时,如图中,同法可得,点在直线上,综上所述,满足条件的点坐标为或;(3)存在,理由如下:,为线段的中点,设直线为,则,解得,直线为,设,以、为对角线,此时、中点重合,而中点为,中点为,解得,;以、为对角线,同理可得:,解得,;以、为对角线,同理可得:,解得,;综上所述,的坐标为:

35、或或【点睛】本题属于一次函数综合题,考查了待定系数法,三角形的面积,全等三角形的判定和性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题25(1)12;(2)证明见详解;(3)或t=4s【分析】(1)由勾股定理求出AD即可;(2)由等腰三角形的性质和平行线的性质得出PBQ=PQB,再由等腰三角形的判定定理即可得出结论;(3解析:(1)12;(2)证明见详解;(3)或t=4s【分析】(1)由勾股定理求出AD即可;(2)由等腰三角形的性质和平行线的性质得出PBQ=PQB,再由等腰三角形的判定定理即可

36、得出结论;(3)分两种情况:当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQMD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQMD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可【详解】(1)解:BDAC,ADB=90,(cm),(2)如图所示:AB=AC,ABC=C,即PBQ=C,PQAC,PQB=C,PBQ=PQB,PB=PQ;(3)分两种情况:当点M在点D的上方时,如图2

37、所示:根据题意得:PQ=BP=t,AM=4t,AD=12,MD=AD-AM=12-4t,PQAC,PQMD,当PQ=MD时,四边形PQDM是平行四边形,即:当t=12-4t,时,四边形PQDM是平行四边形,解得:(s);当点M在点D的下方时,如图3所示:根据题意得:PQ=BP=t,AM=4t,AD=12,MD=AM-AD=4t-12,PQAC,PQMD,当PQ=MD时,四边形PQDM是平行四边形,即:当t=4t-12时,四边形PQDM是平行四边形,解得:t=4(s);综上所述,当或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形【点睛】本题是四边形综合题目,考查了平行四边形的判定、等腰三

38、角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键26(1)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)先求出CDAADE30,进而解析:(1)见解析;(2);(3)2AC2CD2+CE2,理由见解析【分析】(1)先判断出BAECAD,进而得出ACDABE,即可得出结论;(2)先求出CDAADE30,进而求出BED90,最后用勾股定理即可得出结论;(3)连接BE,由等腰直角三角形的性质和全等三角形的性质可得BECD,BEACDA45

39、,由勾股定理可得2AC2CD2+CE2【详解】证明:(1)BACDAE,BAC+CAEDAE+CAE,即BAECAD;又ABAC,ADAE,ACDABE(SAS),CDBE;(2)如图,连接BE,ADAE,DAE60,ADE是等边三角形,DEAD3,ADEAED60,CDAE,CDAADE6030,由(1)得ACDABE,BECD5,BEACDA30,BEDBEA+AED30+6090,即BEDE,(3)2AC2CD2+CE2,理由如下:连接BE,ADAE,DAE90,DAED45,由(1)得ACDABE,BECD,BEACDA45,BECBEA+AED45+4590,即BEDE,在RtBEC中,BC2BE2+CE2,在RtABC中,AB2+AC2BC2,2AC2CD2+CE2【点睛】此题考查了等腰直角三角形、全等三角形的性质以及勾股定理,熟练掌握相关基本性质是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服