收藏 分销(赏)

部编版八年级数学下册期末试卷综合测试卷(word含答案).doc

上传人:精**** 文档编号:1921883 上传时间:2024-05-11 格式:DOC 页数:30 大小:1.13MB
下载 相关 举报
部编版八年级数学下册期末试卷综合测试卷(word含答案).doc_第1页
第1页 / 共30页
部编版八年级数学下册期末试卷综合测试卷(word含答案).doc_第2页
第2页 / 共30页
部编版八年级数学下册期末试卷综合测试卷(word含答案).doc_第3页
第3页 / 共30页
部编版八年级数学下册期末试卷综合测试卷(word含答案).doc_第4页
第4页 / 共30页
部编版八年级数学下册期末试卷综合测试卷(word含答案).doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、部编版八年级数学下册期末试卷综合测试卷(word含答案)一、选择题1下列式子中不一定是二次根式的是( )ABCD2下列各组数中,不能作为直角三角形的三边长的是( )A5,4,3B5,12,13C6,8,10D6,4,73下列命题是真命题的是( )A对角线互相平分的四边形是平行四边形B对角线相等的四边形是矩形C对角线互相垂直的四边形是菱形D对角线互相垂直的四边形是正方形4甲、乙、丙、丁四个旅游团的游客人数都相等,且每个旅游团游客的平均年龄都是35岁,这四个旅游团游客年龄的方差分别,这四个旅游团中年龄相近的旅游团是( )A甲团B乙团C丙团D丁团5在棱长为1的正方体中,顶点A,B的位置如图所示,则A

2、、B两点间的距离为( )A1BCD6如图,在平面直角坐标系上,直线yx3分别与x轴、y轴相交于A、B两点,将AOB沿x轴翻折得到AOC,使点B刚好落在y轴正半轴的点C处,过点C作CDAB交AB于D,则CD的长为()ABC4D57如图,在等腰RtACD中,ACD=90,AC=DC,且AD=2,以边AD、AC、CD为直径画半圆,其中所得两个月形图案AGCE和DHCF(图中阴影部分)的面积之和等于( )ABCD8如图点按的顺序在边长为1的正方形边上运动,是边上的中点设点经过的路程为自变量,的面积为,则函数的大致图象是( )ABCD二、填空题9已知,则_10菱形的两条对角线分别为8、10,则菱形的面积

3、为_11如图,以的两条直角边和斜边为边长分别作正方形,其中正方形、正方形的面积分别为25、144,则阴影部分的面积为_12如图,已知长方形纸片,若将纸片沿折叠,点落在,则重叠部分的面积为_13已知正比例函数图象经过点(1,3),则该函数的解析式是_14在矩形中,的平分线交所在的直线于点,若,则的长为_15如图,在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点是直线:上的一个动点,若,则点的坐标是_16如图,把矩形沿直线向上折叠,使点落在点的位置上,交于点,若,则的长为_三、解答题17计算:(1)(1)(2);(2)();(3)3;(4)18如图,货船和快艇分别从码头A同时出发其中,货

4、船沿着北偏西54方向以15海里/小时的速度匀速航行,快艇沿着北偏东36方向以36海里/小时的速度航行,1小时后两船分别到达B、C点求B、C两点之间的距离19如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图形(1)在图1中,画一个等腰三角形(不含直角),使它的面积为8;(2)在图2中,画一个直角三角形,使它的三边长都是有理数;(3)在图3中,画一个正方形,使它的面积为1020如图1,在中,于点D,点E为边AD上一点,且,连接BE并延长,交AC于点F(1)求证:;(2)过点A作交BF的延长线于点G,连接CG,如图2若,求证:四边形ADCG是矩形21

5、先阅读下列解答过程,然后再解答:小芳同学在研究化简中发现:首先把化为由于,即:, ,所以,问题:(1)填空:_,_(2)进一步研究发现:形如的化简,只要我们找到两个正数a,b(),使,即,那么便有: _(3)化简:(请写出化简过程)22某水果批发商以4元斤的价格对外销售芒果,为了减少库存,尽快回笼资金,推出两种批发方案方案一:每斤打9.5折;方案二:不超过200斤的部分按原价销售,超过200斤的部分打7.5折某超市计划从该水果批发商处购进x斤芒果,按方案一购买需支付费用元,按方案购买需支付费用元,则该超市选择哪种方案(只能选择一种方案)更合算,请说明理由23如图四边形ABCD、BEFG均为正方

6、形(1)如图1,连接AG、CE,请直接写出AG和CE的数量和位置关系(不必证明)(2)将正方形BEFG绕点B顺时针旋转角(),如图2,直线AG、CE相交于点MAG和CE是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:连结MB,求证:MB平分(3)在(2)的条件下,过点A作交MB的延长线于点N,请直接写出线段CM与BN的数量关系24如图,是直线与坐标轴的交点,直线过点,与轴交于点.(1)求,三点的坐标.(2)当点是的中点时,在轴上找一点,使的和最小,画出点的位置,并求点的坐标.(3)若点是折线上一动点,是否存在点,使为直角三角形,若存在,直接写出点的坐标;若不存在,请说明理

7、由. 25在直角坐标系中,四边形是矩形,点在轴上,点在轴的正半轴上,点,分别在第一,二象限,且,(1)如图1,延长交轴负半轴于点,若求证:四边形为平行四边形求点的坐标(2)如图2,为上一点,为的中点,若点恰好落在轴上,且平分,求的长(3)如图3,轴负半轴上的点与点关于直线对称,且,若的面积为矩形面积的,则的长可为_(写出所有可能的答案)【参考答案】一、选择题1C解析:C【分析】根据二次根式的性质即可判断【详解】、是二次根式,中的a可能为负数,故不一定是二次根式故选C【点睛】此题主要考查二次根式的识别,解题的关键是熟知二次根式的定义2D解析:D【分析】根据勾股定理逆定理,只要验证两较小边的平方和

8、等于最长边的平方即可【详解】解:A、,5,4,3可以作为直角三角形的三边长,故此选项不符合题意;B、,5,12,13可以作为直角三角形的三边长,故此选项不符合题意;C、,6,8,10可以作为直角三角形的三边长,故此选项不符合题意;D、,6,4,7不可以作为直角三角形的三边长,故此选项符合题意;故选:D【点睛】本题主要考查了勾股定理逆定理,判断三角形是否为直角三角形,已知三角形的三边长,只要利用勾股定理逆定理加以判断即可3A解析:A【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定方法进行判定即可【详解】解:A、对角线互相平分的四边形是平行四边形,原选项是真命题;B、对角线相等的平行四边形

9、是矩形,原选项是假命题;C、对角线互相垂直的平行四边形是菱形,原选项是假命题;D、对角线相等且互相垂直的平行四边形是正方形,原选项是假命题;故选:A【点睛】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握相关的知识是解题的关键4B解析:B【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S=6,S=1.8,S=5,S=8,1.8568S最小,这四个旅游团中年龄相近的旅游团是:乙团故选:B【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据

10、偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定5C解析:C【分析】根据RtABC和勾股定理可得出AB两点间的距离【详解】解:在RtABC中,AC1,BC,可得:AB,故选:C【点睛】本题考查了勾股定理,得出正方体上A、B两点间的距离为直角三角形的斜边是解题关键6B解析:B【解析】【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,在RtAOB中,利用勾股定理可求出AB的长,由折叠的性质可得出OCOB,进而可得出BC的长,再利用面积法,即可求出CD的长【详解】解:当x0时,y033,点B的坐标为(0,3);

11、当y0时,x30,解得:x4,点A的坐标为(4,0)在RtAOB中,AOB90,OA4,OB3,由折叠可知:OCOB3,BCOB+OC6SABCBCOAABCD,故选B【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7D解析:D【解析】【分析】由等腰三角形的性质及勾股定理可求解AC=CD=2,进而可求得SACD=2,再利用阴影部分的面积=以AC为直径的圆的面积+ACD的面积-以AD为直径的半圆的面积计算可求解【详解】解:在等腰RtACD中,ACD=90,AC=DC,AD=2,AC2+DC2=AD2=8,A

12、C=CD=2,SACD=ACDC=2,=+2-=2,故选:D【点睛】本题主要考查了等腰直角三角形,勾股定理,理清阴影部分的面积=以AC为直径的圆的面积+ACD的面积-以AD为直径的半圆的面积是解题的关键8C解析:C【分析】分类讨论,分别表示出点P位于线段AB上、点P位于线段BC上、点P位于线段MC上时对应的的面积,判断函数图像,选出正确答案即可【详解】由点M是CD中点可得:CM=,(1)如图:当点P位于线段AB上时,即0x1时,y=x;(2)如图:当点P位于线段BC上时,即1x2时,BP=x1,CP=2x,y=;(3)如图:当点P位于线段MC上时,即2250;当时,解得x=250;当时,解得x

13、250;答:当超市计算从该水果批发商处购进芒果少于250斤时,方案一合算;当超市计算从该水果批发商处购进芒果等于250斤时,方案一和方案二费用相同;当超市计算从该水果批发商处购进芒果多于250斤时,方案二合算【点睛】此题考查方案选择问题,解一元一次方程及一元一次不等式,正确求出和是解题的关键23(1)AG=EC,AGEC;(2)满足,理由见解析;见解析;(3)CM=BN【分析】(1)由正方形BEFG与正方形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三解析:(1)AG=EC,AGEC;(2)满足,理由见解析;见解析;(3)CM=BN【分析】(1)由正方形BEFG与正方

14、形ABCD,利用正方形的性质得到两对边相等,一对直角相等,利用SAS得出三角形ABG与三角形CBE全等,利用全等三角形的对应边相等,对应角相等得到CE=AG,BCE=BAG,再利用同角的余角相等即可得证;(2)利用SAS得出ABGCEB即可解决问题;过B作BPEC,BHAM,由全等三角形的面积相等得到两三角形面积相等,而AG=EC,可得出BP=BH,利用到角两边距离相等的点在角的平分线上得到BM为角平分线;(3)在AN上截取NQ=NB,可得出三角形BNQ为等腰直角三角形,利用等腰直角三角形的性质得到BQ=BN,接下来证明BQ=CM,即要证明三角形ABQ与三角形BCM全等,利用同角的余角相等得到

15、一对角相等,再由三角形ANM为等腰直角三角形得到NA=NM,利用等式的性质得到AQ=BM,利用SAS可得出全等,根据全等三角形的对应边相等即可得证【详解】解:(1)AG=EC,AGEC,理由为:正方形BEFG,正方形ABCD,GB=BE,ABG=90,AB=BC,ABC=90,在ABG和BEC中,ABGBEC(SAS),CE=AG,BCE=BAG,延长CE交AG于点M,BEC=AEM,ABC=AME=90,AG=EC,AGEC;(2)满足,理由是:如图2中,设AM交BC于OEBG=ABC=90,ABG=EBC,在ABG和CEB中,ABGCEB(SAS),AG=EC,BAG=BCE,BAG+AO

16、B=90,AOB=COM,BCE+COM=90,OMC=90,AGEC过B作BPEC,BHAM,ABGCEB,SABG=SEBC,AG=EC,ECBP=AGBH,BP=BH,MB平分AME;(3)CM=BN,理由为:在NA上截取NQ=NB,连接BQ,BNQ为等腰直角三角形,即BQ=BN,AMN=45,N=90,AMN为等腰直角三角形,即AN=MN,MN-BN=AN-NQ,即AQ=BM,MBC+ABN=90,BAN+ABN=90,MBC=BAN,在ABQ和BCM中,ABQBCM(SAS),CM=BQ,则CM=BN【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分

17、线的判定,熟练掌握正方形的性质是解本题的关键24(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125【解析】【分析】(1)分别令x=0,y=0即可确定A、B解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,点的坐标为或【解析】【分析】(1)分别令x=0,y=0即可确定A、B的坐标,然后确定直线BC的解析式,然后再令y=0,即可求得C的坐标;(2)先根据中点的性质求出D的坐标,然后再根据轴对称确定的坐标,然后确定DB1的解析式,令y=0,即可求得E的坐标;(3)分别就D点在A

18、B和D点BC上两种情况进行解答即可.【详解】解:(1)在中,令,得,令,得,把代入,得直线为:在中,令,得,点的坐标为;(2)如图点为所求点是的中点,点关于轴的对称点的坐标为设直线的解析式为把,代入,得解得,故该直线方程为:令,得点的坐标为(3)存在,点的坐标为或当点在上时,由得到:,由等腰直角三角形求得点的坐标为;当点在上时,如图,设交轴于点在与中,点的坐标为,易得直线的解析式为,与组成方程组,解得交点的坐标为【点睛】本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键.25(1)见解析;(2);(3)或【

19、分析】(1)利用三线合一定理证明ED=CD,即可得到ED=AB,由矩形的性质可以得到AE=AC=BD,即可证明;设A(a,0),C(0,b),利用勾股定解析:(1)见解析;(2);(3)或【分析】(1)利用三线合一定理证明ED=CD,即可得到ED=AB,由矩形的性质可以得到AE=AC=BD,即可证明;设A(a,0),C(0,b),利用勾股定理求出,则CE=CD+DE=6,E(a-5,0),则,由此即可求解;(2)延长BA到M于y轴交于M,先证明DGCAGM,得到DCG=AMG,AM=CD=AB=3,再由角平分线的定义即可推出CF=MF,设AF=m,则CF=MF=3+m,BF=AB-AF=3-m

20、,由,得到,解方程即可;(3)分Q在矩形ABCD内部和外部两种情况求解即可【详解】解:(1)四边形ABCD是矩形,ADC=90,AC=BD,DC=ABAC=AE,CD=ED,AE=BDED=AB,四边形ABDE是平行四边形;设A(a,0),C(0,b),四边形ABCD是矩形,ABC=90,CD=AB=DE=3,CE=CD+DE=6,E(a-5,0),解得,;(2)如图,延长BA到M于y轴交于M,G为AD中点,AG=DG,四边形ABCD是矩形,D=DAB=GAM=B=90,又DGC=AGM,DGCAGM(ASA),DCG=AMG,AM=CD=AB=3CG平分DCF,DCG=FCM=AMG,CF=MF,设AF=m,则CF=MF=3+m,BF=AB-AF=3-m,解得,;(3)当Q在矩形内部时,如图所示,过点Q作QEBC于E,延长EQ交AD于F,连接AQ,;BCAD,EFAD,BAAD,EFAB,四边形ABEF是矩形,EF=AB=3,BE=AF,点P与点Q关于直线AD对称,且AP=AD,AP=AD=AQ=4,;当Q在矩形ABCD的外部时,如图所示过点Q作QEBC于E,延长QE交AD于F,连接AQ同理求得,综上所述,或,故答案为:或【点睛】本题主要考查了矩形的性质,勾股定理,两点距离公式,等腰三角形的性质与判定,平行四边形的判定等等,解题的关键在于能够熟练掌握相关知识进行求解

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服