1、部编版八年级下册数学期末试卷综合测试卷(word含答案)一、选择题1若二次根式有意义,则x的值不可能是()A3B5C4D02下列线段,能组成直角三角形的是( )A,B,C,D,3四边形BCDE中,对角线BD、CE相交于点F,下列条件不能判定四边形BCDE是平行四边形的是()ABCED,BECDBBFDF,CFEFCBCED,BECDDBCEDBECD4小君周一至周五的支出分别是(单位:元):,则这组数据的平均数是( )ABCD5如图,菱形的边长为2,点是边的中点,点是对角线上一动点,则周长的最小值是( )ABCD6如图,在平面直角坐标系上,直线yx3分别与x轴、y轴相交于A、B两点,将AOB沿
2、x轴翻折得到AOC,使点B刚好落在y轴正半轴的点C处,过点C作CDAB交AB于D,则CD的长为()ABC4D57如图,在ABC中,D、E为边AB的三等分点,EFDGAC,点H为AF与DG的交点若AC9,则DH为()A1B2CD38如图,在平面直角坐标系中,已知A(5,0)点P为线段OA上任意一点在直线yx上取点E,使POPE,延长PE到点F,使PAPF,分别取OE、AF中点M、N,连结MN,则MN的最小值是()A2.5B2.4C2.8D3二、填空题9若式子成立,则a的取值范围是_10菱形的周长是20,一条对角线的长为6,则它的面积为_11若一直角三角形的两直角边长为,1,则斜边长为_12如图,
3、为的中位线,点在上,且为直角若,则的长为_13若一次函数ykx1的图象经过点(2,1),则k的值为_14如图,在矩形中,对角线与相交于点,则的长为_15在平面直角坐标系中,Q是直线上的一个动点,将Q绕点顺时针旋转,得到点连接,则的最小值为_16在矩形ABCD中,将沿对角线BD对折得到,DE与BC交于F,则EF等于_三、解答题17计算:(1)(2)18如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,则梯子的底部向外滑多少米?19如图是由边长为1的小正方形构成66的网格,每个小正方形的顶点叫做格点四边形ABCD的顶点都是格点,点E
4、是边AD与网格线的交点仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)直接写出四边形ABCD的形状;(2)在BC边上画点F,连接EF,使得四边形AEFB的面积为5;(3)画出点E绕着B点逆时针旋转90的对应点G;(4)在CD边(端点除外)上画点H,连接EH,使得EHAE+CH20如图,在矩形中,垂直平分对角线,交于,交于,交于,连接,(1)求证:四边形是菱形;(2)若为的中点,求的度数21阅读下面的材料,解答后面提出的问题:黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次
5、根式中也有这种相辅相成的“对子”,如:(2)(2)1,()()3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式于是,二次根式除法可以这样解:,74像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化解决问题: (1)4的有理化因式是,将分母有理化得; (2)已知x,y,则 ; (3)已知实数x,y满足(x)(y)20170,则x ,y22某种子站销售一种玉米种子,单价为5元千克,为惠民促销,推出以下销售方案:付款金额(元)与购买种子数量(千克)之间的函数关系如图所示(1)当时,求与之间的的函数关系式:(2)徐大爷付款2
6、0元能购买这种玉米种子多少千克?23如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,D是对角线的中点,点P从点A出发,以每秒1个单位的速度沿方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动 (1)求点A的坐标(2)连结,当经过点D时,求四边形的面积(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为_(直接写出答案)24如图,在平面直角坐标系中,点A在直线yx上,且点A的横坐标为6,直线AB分别交x轴、y轴于点B和点C点B的坐标为(10,0)(1)求直线AB的解析式;(2)如图
7、,点D坐标为(4,8),连接AD、BD,动点P从点A出发,沿线段AD运动过点P作x轴的垂线,交AB于点Q,连接DQ设BDQ的面积为S(S0),点P的横坐标为t,求S与t之间的函数关系式;(3)在(2)的条件下,连接PC,若CPD+OBD90,求t的值25如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.(1)求出直线的解析式;(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.(3)为直线上一点,在坐标平面内是否存在一点,使得以、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.【参考答案
8、】一、选择题1B解析:B【分析】根据二次根式有意义的条件求出x的范围,进而得出答案【详解】解:根据二次根式有意义的条件得:x+40,x4,故选:B【点睛】本题考查了二次根式有意义的条件,能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围是解题的关键2C解析:C【分析】根据如果三角形的三边长,满足,那么这个三角形就是直角三角形进行分析即可【详解】解:、,不能组成直角三角形,故此选项错误;、,不能组成直角三角形,故此选项错误;、,能组成直角三角形,故此选项正确;、,不能组成直角三角形,故此选项错误故选:C【点睛】此题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角
9、三角形必须满足较小两边平方的和等于最大边的平方才能做出判断3A解析:A【解析】【分析】根据平行四边形的判定定理分别进行分析即可【详解】解:A、不能判定四边形ABCD是平行四边形,故此选项符合题意;B、根据对角线互相平分的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意;C、根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意;D、根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD为平行四边形,故此选项不合题意;故选;A.【点睛】本题考查平行四边形的判定定理,熟知平行四边形的判定条件是解题的关键4B解析:B【解析】【分析】
10、用这组数据的和除以数据的个数就可计算出这组数据的平均数,据此解答即可【详解】解:(7+10+14+7+12)5=505=10(元),故选:B【点睛】此题主要考查的是平均数的含义及其计算方法,关键是要熟练掌握平均数的计算方法5A解析:A【分析】连接BQ,BD,当P,Q,B在同一直线上时,DQPQ的最小值等于线段BP的长,依据勾股定理求得BP的长,即可得出DQPQ的最小值,进而得出DPQ周长的最小值【详解】解:如图所示,连接BQ,BD,点Q是菱形对角线AC上一动点,BQDQ,DQPQBQPQ,当P,Q,B在同一直线上时,BQPQ的最小值等于线段BP的长,四边形ABCD是菱形,BAD60,BAD是等
11、边三角形,又P是AD的中点,BPAD,APDP1,RtABP中,ABP30,APAB1,BP,DQPQ最小值为,又DP1,DPQ周长的最小值是,故选:A【点睛】本题主要考查了菱形的性质以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点6B解析:B【解析】【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,在RtAOB中,利用勾股定理可求出AB的长,由折叠的性质可得出OCOB,进而可得出BC的长,再利用面积法,即可求出CD的长【详解】解:当x0时,y033,点B的坐标为(0,3);当y0时,x30,解得:x4,点A的
12、坐标为(4,0)在RtAOB中,AOB90,OA4,OB3,由折叠可知:OCOB3,BCOB+OC6SABCBCOAABCD,故选B【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7C解析:C【解析】【分析】依据DH是AEF的中位线,即可得出DH=EF,再根据BEFBAC,即可得到EF的长,进而得出DH的长【详解】解:D、E为边AB的三等分点,EFDGAC,BE=DE=AD,BF=GF=CG,AH=HF,AB=3BE,DH是AEF的中位线,DH=EF,EFAC,BEFBAC,即,解得:EF=3,DH=EF
13、=3=,故选:C【点睛】本题考查了相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键8B解析:B【分析】如图,连接PM,PN,设AF交EM于J,连接PJ证明四边形PMJN是矩形,推出MN=PJ,求出PJ的最小值即可解决问题【详解】解:如图,连接PM,PN,设AF交EM于J,连接PJPO=PE,OM=ME,PMOE,OPM=EPM,PF=PA,NF=NA,PNAF,APN=FPN,MPN=EPM+FPN=(OPF+FPA)=90,PMJ=PNJ=90,四边形PMJN是矩形,MN=PJ,当JPOA时,PJ的值最小此时MN的值最小,AFOM,A(5,0),直线
14、OM的解析式为y=x设直线AF的解析式为y=x+b直线AF过A(5,0),=0,b=,y=,由,解得PJ的最小值为=2.4即MN的最小值为2.4故选:B【点睛】本题考查一次函数的应用,矩形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题二、填空题9【解析】【分析】根据二次根式有意义的条件,分式有意义的条件,即可求得【详解】或者解得:故答案为:【点睛】本题考查了二次根式的性质,分式的性质,理解被开方数为非负数是解题的关键10D解析:【解析】【分析】先画出图形,根据菱形的性质可得,DO3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公
15、式即可求得结果.【详解】由题意得,菱形ABCD,ACBD考点:本题考查的是菱形的性质【点睛】解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.112【解析】【分析】根据勾股定理计算,得到答案【详解】解:斜边长2,故答案为2【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c212D解析:5【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长【详解】解:DE为ABC的中位线,DE=BC=4
16、=2,AFB=90,D是AB 的中点,DF=AB= 3=,EF=DE-DF=0.5,故答案为:0.5【点睛】本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键13-1【分析】一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值【详解】解:一次函数ykx1的图象经过点(2,1),即当x2时,y1,可得:1-2k1,解得:k1则k的值为1【点睛】本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数14A解析:【分析】根据矩形的性质得出OA=OB=OC=OD,BAD=90,求出AOB是等边三角形
17、,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可【详解】四边形ABCD是矩形,OA=OB=OC=OD, BAD=90, AOB是等边三角形,OB=AB=1,BD=2BO=2,在RtBAD中, 故答案为【点睛】考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.15【分析】利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题【详解】解:作轴于点,轴于,在和中,解析:【分析】利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题【详解】解:作
18、轴于点,轴于,在和中,设,设点,则,整理,得:,则点,在直线上,设直线与x轴,y轴的交点分别为E、F,如图,当时,取得最小值,令,则,解得,令,则,在中,当时,则,的最小值为,故答案为:【点睛】本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换旋转,勾股定理,表示出点的坐标以及点所在直线的函数关系式是解题的关键16【分析】根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值【详解】解:由折叠可知:AB=BE=CD=3,解析:【分析】根据折叠的性质和矩形的性质得到BF=DF,设BF=D
19、F=x,在CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值【详解】解:由折叠可知:AB=BE=CD=3,E=A=90,DE=AD=4,ADB=EDB,四边形ABCD是矩形,ADBC,ADB=CBD,CBD=EDB,BF=DF,设BF=DF=x,则CF=4-x,在CDF中,即,解得:x=,即DF=,EF=DE-DF=,故答案为:【点睛】本题主要考查了矩形的性质,翻折的性质,勾股定理,等角对等边,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程三、解答题17(1)6;(2)-1【分析】(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;(2)根据除法法则
20、和乘法法则计算二次根式的乘除法,再将结果相加减即可【详解】(1)(2)解析:(1)6;(2)-1【分析】(1)将二次根式的系数相乘,将二次根式相乘,再化简即可得到答案;(2)根据除法法则和乘法法则计算二次根式的乘除法,再将结果相加减即可【详解】(1)(2)【点睛】此题考查二次根式的计算,正确掌握二次根式的乘除法法则,二次根式混合运算法则,以及二次根式的性质化简二次根式是解题的关键18#【分析】在直角三角形ABC中运用勾股定理求出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可【详解】解:在中,在中解析:#【分析】在直角三角形ABC中运用勾股定理求
21、出BC的长,进而求得CE的长,再在直角三角形EDC中运用勾股定理求出DC的长,最后求得AD的长即可【详解】解:在中,在中【点睛】本题主要考查了勾股定理在实际生活中的应用,灵活利用勾股定理解直角三角形成为解答本题的关键19(1)正方形;(2)见解析;(3)见解析;(4)见解析【解析】【分析】(1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形;(2)延长EO交BC于F,则根据正方形为中心对称图形得解析:(1)正方形;(2)见解析;(3)见解析;(4)见解析【解析】【分析】(1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形;(2)延长EO交BC于F,则根据正方形为中心对称
22、图形得到AECF,则可根据梯形的面积公式计算出四边形AEFB的面积为5;(3)延长DC交过B点的铅垂线于G点,通过证明BAEBCG得到BGBE;(4)利用网格特点,作EBG的平分线交CD于H点,证明BEHBGH,则EHHG,则AECG,则有EHAE+CH【详解】解:(1)ABBCCDAD,四边形ABCD为菱形,BD2,AD2+AB2BD2,BAD90,所以四边形ABCD为正方形;(2)如图,点F为所作;(3)如图,点G为所作;(4)如图,H点为所作【点睛】本题考查了作图旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义,并据此得出变换后的对应点20(1)见解析;(2)60【分析】(1)根
23、据垂直平分线的性质,可以得到,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由解析:(1)见解析;(2)60【分析】(1)根据垂直平分线的性质,可以得到,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论(2)由题意,可以得到垂直平分 从而得出 结合题意可得 的度数,进而求得的度数【详解】(1)证明:垂直平分,四边形是矩形,四边形是菱形(2)为中点,垂直平分,为等边三角形,【点睛】本题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性
24、质,熟练掌握这些性质及判定定理是解题关键21(1),;(2)10 ;(3),.【解析】【详解】(1) , 的有理化因式为 ;, 分母有理化得: .(2). , (3) (x)(y)20170,解析:(1),;(2)10 ;(3),.【解析】【详解】(1) , 的有理化因式为 ;, 分母有理化得: .(2). , (3) (x)(y)20170, ,整理得: ,x=y将x=y代入可得:, .故答案为,. 点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键.22(1);(2)4.5千克【分析】(1)当x2时函数为一次函数,用待定系数法求函数解析式;(2)把y2
25、0代入(1)中解析式求解即可.【详解】解:(1)当时,设与之间的的函数关系式为,解析:(1);(2)4.5千克【分析】(1)当x2时函数为一次函数,用待定系数法求函数解析式;(2)把y20代入(1)中解析式求解即可.【详解】解:(1)当时,设与之间的的函数关系式为,将点,带入解析式得解得 (2)将时,带入中解得千克答:徐大爷付款20元能购买这种玉米种子4.5千克【点睛】本题考查一次函数的应用,关键是用待定系数法求函数解析式23(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH和OH即可;(2)证明,表示出AP,CQ,根据OC=14求出t值,得到AP,CQ,再根据面积公式计算;(
26、3)由Q、D、C、解析:(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH和OH即可;(2)证明,表示出AP,CQ,根据OC=14求出t值,得到AP,CQ,再根据面积公式计算;(3)由Q、D、C、F为顶点的四边形是菱形得到以,为顶点的三角形是等腰三角形,求出CD,得到点Q坐标,再分情况讨论【详解】解:(1)过点作轴于,点坐标为(2),点坐标为,点是对角线AC的中点,点的坐标为,四边形ABCD是平行四边形,当PQ经过点时,在和中,四边形APCQ的面积为,即当PQ经过点时,四边形APCQ的面积为21(3)是平面内一点,以,为顶点的四边形是菱形,则以,为顶点的三角形是等腰三角形,当时
27、,点坐标为或,当点坐标为时,点坐标为,当点坐标为时,点坐标为,当时,点与点关于轴对称,点的坐标为,当时,设点坐标为,解得,点坐标为,点坐标为,综上所述,以,为顶点的四边形是菱形,点的坐标为或或或【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论24(1)yx+5;(2)St+25;(3)t4【解析】【分析】(1)因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求解析:(1)yx+5;(2)St+25;(3)t4【解析】【分析】(1)
28、因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求得直线AB的解析式;(2)根据已知条件得到四边形OADB是平行四边形,过A作x轴的垂线,垂足为E,过P作x轴的垂线,垂足为F,交AB与点Q,连接OQ,求得E(6,0),推出四边形OADB是菱形,且可证,故=,求得Q(t,),根据三角形的面积公式即可得到结论;(3)设AD交y轴于F,连接CD,可证,根据全等三角形的性质得到AOCACD,求得CPDADC,再证,可得PF=DF,故t的值可得【详解】解:(1)点A在直线,且点A的横坐标为-6,将x=-6代入,求得y=8,A点坐标为(6,8
29、),且由题意可知B点坐标(10,0),设直线AB的解析式为ykx+b,解得:,直线AB的解析式为:;(2)D(4,8),A(6,8),AD10,且ADOB,又B(10,0),O(0,0),故OB10,四边形OADB是平行四边形(对边平行且相等),如图,过A作x轴的垂线,垂足为E,过P作x轴的垂线,交AB与点Q,垂足为F,连接OQ,A(-6,8),故E(-6,0),AE8,OE6,根据勾股定理,可得,OAAD,四边形OADB是菱形(邻边相等的平行四边形是菱形),故BO=BD,菱形对角线平分每组对角,故QBD=QBF,在和中,(SAS),=,点P的横坐标为t,点Q的横坐标为t,直线AB的解析式为;
30、Q(t,),QF,=,;(3)在(2)的条件下,四边形OADB是菱形,如图,设AD交y轴于F,连接CD,在和中,(SAS),AOCADC,OAD+AOC90,OADOBD,OBD+AOC90,CPD+OBD90,CPDAOC,CPDADC,又ADy轴,CFPCFD90,在和中,(AAS),PFDF,D(4,8),P(-4,8),t-4【点睛】本题主要考察了求一次函数解析式、菱形的性质、勾股定理、全等三角形的证明及应用、动点问题与函数的结合,该题融合了较多知识点,解题的关键在于找出全等三角形,并应用全等的性质去计算25(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或
31、或或.【分析】(1)如图1中,作BHx轴于H证明COAAHB(AAS),可得BH=OA=1,AH=OC=2解析:(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BHx轴于H证明COAAHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问
32、题【详解】(1)如图1中,作BHx轴于HA(1,0)、C(0,2),OA=1,OC=2,COA=CAB=AHB=90,ACO+OAC=90,CAO+BAH=90,ACO=BAH,AC=AB,COAAHB(AAS),BH=OA=1,AH=OC=2,OH=3,B(3,1),设直线BC的解析式为y=kx+b,则有,解得:,;(2)如图2中,四边形ABMN是平行四边形,ANBM,直线AN的解析式为:,B(3,1),C(0,2),BC=,t=s时,四边形ABMN是平行四边形;(3)如图3中,如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1菱形OBP3Q3,连接OQ交BC于E,OEBC,直线OE的解析式为y=3x,由,解得:,E(,),OE=OQ,Q(,),OQ1BC,直线OQ1的解析式为y=-x,OQ1=OB=,设Q1(m,-),m2+m2=10,m=3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由,解得:,Q2(,)综上所述,满足条件的点Q坐标为:或或或.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题