资源描述
人教中学七年级下册数学期末复习及解析
一、选择题
1.如图,下列结论中错误的是( )
A.∠1与∠2是同旁内角 B.∠1与∠4是内错角
C.∠5与∠6是内错角 D.∠3与∠5是同位角
2.下列运动属于平移的是( )
A.汽车在平直的马路上行驶 B.吹肥皂泡时小气泡变成大气泡
C.铅球被抛出 D.红旗随风飘扬
3.下列各点中,在第二象限的是( )
A. B. C. D.
4.下列命题中,假命题是( )
A.对顶角相等
B.两直线平行,内错角相等
C.在同一平面内,垂直于同一直线的两直线平行
D.过一点有且只有一条直线与已知直线平行
5.如图,,平分,,点在的延长线上,连接,,下列结论:①;②平分;③;④.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④的算术平方根为.正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
7.如图,,分别交,于点,,若,则的度数为( )
A. B. C. D.
8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )
A.(3,4) B.(5,4) C.(7,0) D.(8,1)
九、填空题
9.已知+|3x+2y﹣15|=0,则=_____.
十、填空题
10.若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_____,b=______
十一、填空题
11.如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D到AB的距离为_____.
十二、填空题
12.如图,已知a∥b,如果∠1=70°,∠2=35°,那么∠3=_____度.
十三、填空题
13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______.
十四、填空题
14.已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=__.
十五、填空题
15.如图,直角坐标系中、两点的坐标分别为,,则该坐标系内点的坐标为__________.
十六、填空题
16.在平面直角坐标系中,已知点,,,且,下列结论:①轴,②将点A先向右平移5个单位,再向下平移个单位可得到点;③若点在直线上,则点的横坐标为3;④三角形的面积为,其中正确的结论是___________(填序号).
十七、解答题
17.计算(1)
(2)
十八、解答题
18.求下列各式中的值
(1)
(2)
十九、解答题
19.完成下面的证明:
已知:如图, , 和相交于点, 平分,和相交于点,.
求证:.
证明:(已知),
(______________),
________(两直线平行,同位角相等).
又(已知),
______(________)
(等量代换) .
平分(已知) ,
_______(角平分线的定义).
(_________).
二十、解答题
20.如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3).点A、B分别在格点上.
(1)直接写出A、B两点的坐标;
(2)若把DABC向上平移3个单位,再向右平移2个单位得DA¢B¢C¢,画出DA¢B¢C¢;
(3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M¢的坐标.
二十一、解答题
21.(阅读材料)
∵,即23,∴11<2,∴1的整数部分为1,∴1的小数部分为2
(解决问题)
(1)填空:的小数部分是 ;
(2)已知a是4的整数部分,b是4的小数部分,求代数式(﹣a)3+(b+4)2的值.
二十二、解答题
22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
二十三、解答题
23.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.
(1)若时,则___________;
(2)试求出的度数(用含的代数式表示);
(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)
二十四、解答题
24.已知直线,点分别为, 上的点.
(1)如图1,若,, ,求与的度数;
(2)如图2,若,, ,则_________;
(3)若把(2)中“,, ”改为“,, ”,则_________.(用含的式子表示)
二十五、解答题
25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同位角、内错角、同旁内角的定义结合图形进行判断即可.
【详解】
解:如图,∠1与∠2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;
∠1与∠6是直线a与直线b被直线c所截的内错角,而∠6与∠4是邻补角,所以∠1与∠4不是内错角,因此选项B符合题意;
∠5与∠6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;
∠3与∠5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;
故选:B.
【点睛】
本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键.
2.A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;
B、吹肥皂泡时小气泡变成大气泡,不属于平移
解析:A
【分析】
根据平移的定义,对选项进行一一分析,排除错误答案.
【详解】
解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;
B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;
C、铅球被抛出是旋转与平移组合,故C选项不符合;
D、随风摆动的红旗,不属于平移,故D选项不符合.
故选:A.
【点睛】
此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.
3.B
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A、点在x轴上,不符合题意;
B、点在第二象限,符合题意;
C、点在第三象限,不符合题意;
D、点在第四象限,不符合题意;
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项.
【详解】
解:A、对顶角相等,是真命题,故不符合题意;
B、两直线平行,内错角相等,是真命题,故不符合题意;
C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;
D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意;
故选D.
【点睛】
本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键.
5.D
【分析】
结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.
【详解】
解:∵ABCD,
∴∠1=∠2,
∵AC平分∠BAD,
∴∠2=∠3,
∴∠1=∠3,
∵∠B=∠CDA,
∴∠1=∠4,
∴∠3=∠4,
∴BCAD,
∴①正确;
∴CA平分∠BCD,
∴②正确;
∵∠B=2∠CED,
∴∠CDA=2∠CED,
∵∠CDA=∠DCE+∠CED,
∴∠ECD=∠CED,
∴④正确;
∵BCAD,
∴∠BCE+∠AEC= 180°,
∴∠1+∠4+∠DCE+∠CED= 180°,
∴∠1+∠DCE = 90°,
∴∠ACE= 90°,
∴AC⊥EC,
∴③正确
故其中正确的有①②③④,4个,
故选:D.
【点睛】
此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.
6.D
【分析】
分别求出每个数的立方根、平方根和算术平方根,再判断即可.
【详解】
∵1的立方根为1,∴①错误;
∵4的平方根为±2,∴②正确;
∵−8的立方根是−2,∴③正确;
∵的算术平方根是,∴④正确;
正确的是②③④,
故选:D.
【点睛】
本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.
7.B
【分析】
根据平行线的性质和对顶角相等即可得∠2的度数.
【详解】
解:∵,
∴∠2=∠FHD,
∵∠FHD=∠1=39°,
∴∠2=39°.
故选:B.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
8.B
【分析】
根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.
【详解】
解:由图可得,
点(1,0)第一次碰撞后的点的坐标为(0
解析:B
【分析】
根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.
【详解】
解:由图可得,
点(1,0)第一次碰撞后的点的坐标为(0,1),
第二次碰撞后的点的坐标为(3,4),
第三次碰撞后的点的坐标为(7,0),
第四次碰撞后的点的坐标为(8,1),
第五次碰撞后的点的坐标为(5,4),
第六次碰撞后的点的坐标为(1,0),
…,
∵2021÷6=336…5,
∴小球第2021次碰到球桌边时,小球的位置是(5,4),
故选:B.
【点睛】
本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.
九、填空题
9.3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛
解析:3
【分析】
直接利用非负数的性质得出x,y的值进而得出答案.
【详解】
∵+|3x+2y﹣15|=0,
∴x+3=0,3x+2y-15=0,
∴x=-3,y=12,
∴=.
故答案是:3.
【点睛】
考查了非负数的性质,正确得出x,y的值是解题关键.
十、填空题
10.a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-
解析:a=3 b=-4
【分析】
先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值
【详解】
由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),
点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),
则a=3,b=-4.
【点睛】
此题考查关于x轴、y轴对称的点的坐标,难度不大
十一、填空题
11.4cm
【详解】
∵BC=10cm,BD:DC=3:2,
∴BD=6cm,CD=4cm,
∵AD是△ABC的角平分线,∠ACB=90°,
∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.
解析:4cm
【详解】
∵BC=10cm,BD:DC=3:2,
∴BD=6cm,CD=4cm,
∵AD是△ABC的角平分线,∠ACB=90°,
∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.
十二、填空题
12.75
【分析】
根据平行线的性质和的度数得到,再利用平角的性质可得的度数.
【详解】
解:如图:
,,
.
,
.
故答案为:75.
【点睛】
此题考查了平行线的性质,解题的关键是注意掌握两直线平
解析:75
【分析】
根据平行线的性质和的度数得到,再利用平角的性质可得的度数.
【详解】
解:如图:
,,
.
,
.
故答案为:75.
【点睛】
此题考查了平行线的性质,解题的关键是注意掌握两直线平行,同位角相等定理的应用.
十三、填空题
13.【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性
解析:
【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.
十四、填空题
14.【分析】
根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.
【详解】
解:∵实数a、b互为相反数,
∴a+b=0,
∵c、d互为倒数,
∴cd=1,
∵3<<4,
∴的整数部分
解析:
【分析】
根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.
【详解】
解:∵实数a、b互为相反数,
∴a+b=0,
∵c、d互为倒数,
∴cd=1,
∵3<<4,
∴的整数部分为3,e=3,
∵2<<3,
∴的小数部分为﹣2,即f=﹣2,
∴-+e﹣f
=
=4-
故答案为:4-.
【点睛】
本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.
十五、填空题
15.【分析】
首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可.
【详解】
解:点C的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正
解析:
【分析】
首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可.
【详解】
解:点C的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正确建立坐标系.
十六、填空题
16.①③④
【分析】
①两点纵坐标相同,得到 AB //x轴,即可判断;
②根据平移规律求得平移后的点的坐标,即可判断;
③根据两点的坐标特征可知直线BCx轴,即可判断;
④求得三角形的面积,即可判断.
解析:①③④
【分析】
①两点纵坐标相同,得到 AB //x轴,即可判断;
②根据平移规律求得平移后的点的坐标,即可判断;
③根据两点的坐标特征可知直线BCx轴,即可判断;
④求得三角形的面积,即可判断.
【详解】
解:A(-2,4),B(3,4),它们的纵坐标相同,
AB //x轴,
故①正确;
将点A 先向右平移 5 个单位,再向下平移m个单位可得到点(3,4-m),
故②错误;
B(3,4),C(3,m),它们的横坐标相同,
BC x轴,
点 D 在直线BC上,
点 D的横坐标为 3,
故③正确;
点A(-2,4),B(3, 4),C(3,m),且m<4,
AB =5,C 点到 AB 的距离为(4-m),
三角形 ABC 的面积为,
故④正确;
故答案为:①③④.
【点睛】
本题考查了平行线的判定,坐标和图形变化,平移以及点的坐标特征,明确线段的位置和大小是解题的关键.
十七、解答题
17.(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(
解析:(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(2),
,
.
【点睛】
本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
解析:(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
【点睛】
本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.
十九、解答题
19.内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.
【分析】
由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.
【详解】
证明:(已知),
(内
解析:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.
【分析】
由可判定,即得出,再根据得出,等量代换得到,再根据角平分线的定义等量代换即可得解.
【详解】
证明:(已知),
(内错角相等,两直线平行),
(两直线平行,同位角相等).
又(已知),
(两直线平行,同位角相等),
(等量代换).
平分(已知),
(角平分线的定义).
(等量代换).
故答案为:内错角相等,两直线平行;1;1;两直线平行,同位角相等;2;等量代换.
【点睛】
本题考查了平行线的判定与性质,解题的关键是熟记“内错角相等,两直线平行”、“两直线平行,同位角相等”.
二十、解答题
20.(1),;(2)见解析;(3).
【分析】
(1)根据原点的位置确定点的坐标即可;
(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;
(3)将M(m,n)向上平移3个单位,再向右平移
解析:(1),;(2)见解析;(3).
【分析】
(1)根据原点的位置确定点的坐标即可;
(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;
(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标.
【详解】
(1)根据原点的位置确定点的坐标,
则,;
(2)将三点向上平移3个单位,再向右平移2个单位得到,
,
,
在图中描出点,连接,DA¢B¢C¢即为所求.
(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3
.
【点睛】
本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键.
二十一、解答题
21.(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
(1)∵81<91<1
解析:(1);(2)21.
【分析】
(1)由于81<91<100,可求的整数部分,进一步得出的小数部分;
(2)先求出4的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
(1)∵81<91<100,
∴9<<10,
∴的整数部分是9,
∴的小数部分是9;
(2)∵16<21<25,
∴4<<5,
∵a是4的整数部分,b是4的小数部分,
∴a=4﹣4=0,b4,
∴(﹣a)3+(b+4)2=0+21=21.
【点睛】
本题考查了估算无理数的大小,熟练掌握估算无理数大小的方法和无理数整数部分和小数部分的表示方法是解题关键.
二十二、解答题
22.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
二十三、解答题
23.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解
解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解即可;
(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.
【详解】
解:(1)当n=20时,∠ABC=40°,
过E作EF∥AB,则EF∥CD,
∴∠BEF=∠ABE,∠DEF=∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=60°;
(2)同(1)可知:
∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;
当点B在点A右侧时,
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.
二十四、解答题
24.(1)120º,120º;(2)160;(3)
【分析】
(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;
(2)同理(1)的求法,
解析:(1)120º,120º;(2)160;(3)
【分析】
(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;
(2)同理(1)的求法,根据,, 求解即可;
(3)同理(1)的求法,根据,, 求解即可;
【详解】
解:(1)如图示,分别过点作,,
∵,
∴,
∴,
∴,
∴,
∵,
∴,
又∵,
∴,,
∴.
(2)如图示,分别过点作,,
∵,∴,
∴,
∴,
∴,
∵,
∴,
又∵,
∴,,
∴.
故答案为:160;
(3)同理(1)的求法
∵,∴,
∴,
∴,
∴,
∵,
∴,
又∵,
∴, ,
∴.
故答案为:.
【点睛】
本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.
二十五、解答题
25.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′
解析:(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵,,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;
(2)①,理由如下
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
②,理由如下:
∵是的一个外角
∴.
∵是的一个外角
∴
又∵
∴
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
展开阅读全文