资源描述
2023年人教版七7年级下册数学期末解答题考试试卷含答案
一、解答题
1.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是___________;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?
2.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
3.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
4.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
5.求下图的方格中阴影部分正方形面积与边长.
二、解答题
6.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.
(1)如图1,求证:GFEH;
(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.
7.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,且是直角三角形,,操作发现:
(1)如图1.若,求的度数;
(2)如图2,若的度数不确定,同学们把直线向上平移,并把的位置改变,发现,请说明理由.
(3)如图3,若∠A=30°,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
8.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.
(1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC?
(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;
(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.
9.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.
(1)根据图1填空:∠1= °,∠2= °;
(2)现把三角板绕B点逆时针旋转n°.
①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;
②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.
10.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
三、解答题
11.如图,AB⊥AK,点A在直线MN上,AB、AK分别与直线EF交于点B、C,∠MAB+∠KCF=90°.
(1)求证:EF∥MN;
(2)如图2,∠NAB与∠ECK的角平分线交于点G,求∠G的度数;
(3)如图3,在∠MAB内作射线AQ,使∠MAQ=2∠QAB,以点C为端点作射线CP,交直线AQ于点T,当∠CTA=60°时,直接写出∠FCP与∠ACP的关系式.
12.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).
①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线.
(2)已知,如图3,,BE平分,CF平分.求证:(写出每步的依据).
13.如图,,平分,设为,点E是射线上的一个动点.
(1)若时,且,求的度数;
(2)若点E运动到上方,且满足,,求的值;
(3)若,求的度数(用含n和的代数式表示).
14.如图1,在平面直角坐标系中,,且满足,过作轴于
(1)求三角形的面积.
(2)发过作交轴于,且分别平分,如图2,若,求的度数.
(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由.
15.如图1,D是△ABC延长线上的一点,CEAB.
(1)求证:∠ACD=∠A+∠B;
(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.
(3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN与∠ACB的关系,说明理由.
四、解答题
16.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
17.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
18.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.
(1)求证:∠BED=90°;
(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;
(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: .
19.已知ABCD,点E是平面内一点,∠CDE的角平分线与∠ABE的角平分线交于点F.
(1)若点E的位置如图1所示.
①若∠ABE=60°,∠CDE=80°,则∠F= °;
②探究∠F与∠BED的数量关系并证明你的结论;
(2)若点E的位置如图2所示,∠F与∠BED满足的数量关系式是 .
(3)若点E的位置如图3所示,∠CDE 为锐角,且,设∠F=α,则α的取值范围为 .
20.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、解答题
1.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析
【分析】
(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;
(2)设长方形纸片的长为,宽为,根据
解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析
【分析】
(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;
(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.
【详解】
(1)∵用两个面积为的小正方形拼成一个大的正方形,
∴大正方形的面积为400,
∴大正方形的边长为
故答案为:20cm;
(2)设长方形纸片的长为,宽为,
,
解得:,
,
答:不能剪出长宽之比为5:4,且面积为的大长方形.
【点睛】
此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.
2.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
3.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
4.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
5.8;
【分析】
用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.
【详解】
解:正方形面积=4×4-4××2×2=8;
正方形的边
解析:8;
【分析】
用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.
【详解】
解:正方形面积=4×4-4××2×2=8;
正方形的边长==.
【点睛】
本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.
二、解答题
6.(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详
解析:(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详解】
(1)证明:,
,
,
,
;
(2)解:,理由如下:
如图2,过点作,过点作,
,
,
,,
,
同理,,
平分,平分,
,,
,
由(1)知,,
,
,
,
,
.
【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
7.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°
解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)∵∠1=48°,∠BCA=90°,
∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,
∵a∥b,
∴∠2=∠3=42°;
(2)理由如下:
过点B作BD∥a.如图2所示:
则∠2+∠ABD=180°,
∵a∥b,
∴b∥BD,
∴∠1=∠DBC,
∴∠ABD=∠ABC-∠DBC=60°-∠1,
∴∠2+60°-∠1=180°,
∴∠2-∠1=120°;
(3)∠1=∠2,理由如下:
过点C 作CP∥a,如图3所示:
∵AC平分∠BAM
∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,
又∵a∥b,
∴CP∥b,∠1=∠BAM=60°,
∴∠PCA=∠CAM=30°,
∴∠BCP=∠BCA-∠PCA=90°-30°=60°,
又∵CP∥a,
∴∠2=∠BCP=60°,
∴∠1=∠2.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
8.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.
【分析】
(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD
解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.
【分析】
(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;
(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;
(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.
【详解】
解:(1)是,理由如下:
要使AD平分∠EAC,
则要求∠EAD=∠CAD,
由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,
则当∠ACB=∠B时,有AD平分∠EAC;
故答案为:是;
(2)∠B=∠ACB,理由如下:
∵AD平分∠EAC,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠B=∠EAD,∠ACB=∠CAD,
∴∠B=∠ACB.
(3)∵AC⊥BC,
∴∠ACB=90°,
∵∠EBF=50°,
∴∠BAC=40°,
∵AD∥BC,
∴AD⊥AC.
【点睛】
此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.
9.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相
解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析
【分析】
(1)根据邻补角的定义和平行线的性质解答;
(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;
②结合图形,分AB、BC、AC三条边与直尺垂直讨论求解.
【详解】
解:(1)∠1=180°-60°=120°,
∠2=90°;
故答案为:120,90;
(2)①如图2,
∵∠ABC=60°,
∴∠ABE=180°-60°-n°=120°-n°,
∵DG∥EF,
∴∠1=∠ABE=120°-n°,
∠BCG=180°-∠CBF=180°-n°,
∵∠ACB+∠BCG+∠2=360°,
∴∠2=360°-∠ACB-∠BCG
=360°-90°-(180°-n°)
=90°+n°;
②当n=30°时,∵∠ABC=60°,
∴∠ABF=30°+60°=90°,
AB⊥DG(EF);
当n=90°时,
∠C=∠CBF=90°,
∴BC⊥DG(EF),AC⊥DE(GF);
当n=120°时,
∴AB⊥DE(GF).
【点睛】
本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.
10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
三、解答题
11.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K
解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【分析】
(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;
(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;
(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.
【详解】
解:(1)∵AB⊥AK
∴∠BAC=90°
∴∠MAB+∠KAN=90°
∵∠MAB+∠KCF=90°
∴∠KAN=∠KCF
∴EF∥MN
(2)设∠KAN=∠KCF=α
则∠BAN=∠BAC+∠KAN=90°+α
∠KCB=180°-∠KCF=180°-α
∵AG平分∠NAB,CG平分∠ECK
∴∠GAN=∠BAN=45°+α,∠KCG=∠KCB=90°-α
∴∠FCG=∠KCG+∠KCF=90°+α
过点G作GH∥EF
∴∠HGC=∠FCG=90°+α
又∵MN∥EF
∴MN∥GH
∴∠HGA=∠GAN=45°+α
∴∠CGA=∠HGC-∠HGA=(90°+α)-(45°+α)=45°
(3)①当CP交射线AQ于点T
∵
∴
又∵
∴
由(1)可得:EF∥MN
∴
∵
∴
∵,
∴
∴
即∠FCP+2∠ACP=180°
②当CP交射线AQ的反向延长线于点T,延长BA交CP于点G
,由EF∥MN得
∴
又∵,,
∴
∵,
∴
∴
∴
由①可得
∴
∴
综上,∠FCP=2∠ACP或∠FCP+2∠ACP=180°.
【点睛】
本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.
12.(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据
解析:(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论.
【详解】
(1)解:①如图2所示:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
故答案为垂;
(2)证明:平分,平分(已知),
,(角平分线的定义),
(已知),
(两直线平行,内错角相等),
(等量代换),
(等式性质),
(内错角相等,两直线平行).
【点睛】
本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.
13.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;
(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.
【详解】
解:(1),,
,
平分,
,
,
又,
;
(2)根据题意画图,如图1所示,
,,
,
,
,
,
又平分,
,
;
(3)①如图2所示,
,
,
平分,
,
,
又,
,
,
解得;
②如图3所示,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.
14.(1)4;(2)45°;(3)P(0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出
解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;
(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;
(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.
【详解】
解:(1)由题意知:a=−b,a−b+4=0,
解得:a=−2,b=2,
∴ A(−2,0),B(2,0),C(2,2),
∴S△ABC=;
(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠ABD,
∴∠3+∠4+∠5+∠6=90°,
过E作EF∥AC,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED=∠1+∠2=×90°=45°;
(3)存在.理由如下:
设P点坐标为(0,t),直线AC的解析式为y=kx+b,
把A(−2,0)、C(2,2)代入得:
,解得,
∴直线AC的解析式为y=x+1,
∴G点坐标为(0,1),
∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1,
∴P点坐标为(0,3)或(0,−1).
【点睛】
本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.
15.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.
【分析】
(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;
(2)首先根据角
解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.
【分析】
(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;
(2)首先根据角平分线的定义得出∠FCD=∠ECD,∠HAF=∠HAD,进而得出∠F=(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案;
(3)根据平行线的性质及角平分线的定义得出,, ,再通过等量代换即可得出∠MQN=∠ACB.
【详解】
解:(1)∵CEAB,
∴∠ACE=∠A,∠ECD=∠B,
∵∠ACD=∠ACE+∠ECD,
∴∠ACD=∠A+∠B;
(2)∵CF平分∠ECD,FA平分∠HAD,
∴∠FCD=∠ECD,∠HAF=∠HAD,
∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),
∵CHAB,
∴∠ECD=∠B,
∵AHBC,
∴∠B+∠HAB=180°,
∵∠BAD=70°,
,
∴∠F=(∠B+∠HAD)=55°;
(3)∠MQN=∠ACB,理由如下:
平分,
.
平分,
.
,
.
∴∠MQN=∠MQG﹣∠NQG
=180°﹣∠QGR﹣∠NQG
=180°﹣(∠AQG+∠QGD)
=180°﹣(180°﹣∠CQG+180°﹣∠QGC)
=(∠CQG+∠QGC)
=∠ACB.
【点睛】
本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.
四、解答题
16.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=∠PAB,∠ABC=∠ABM,
∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,
∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵AE、AF分别是∠BAO与∠GAO的平分线,
∴∠EAO=∠BAO,∠FAO=∠GAO,
∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.
在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO= ∠BAO,∠EOQ=∠BOQ,
∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,
∵有一个角是另一个角的倍,故有:
①∠EAF=∠F,∠E=30°,∠ABO=60°;
②∠F=∠E,∠E=36°,∠ABO=72°;
③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);
④∠E=∠F,∠E=54°,∠ABO=108°(舍去);
∴∠ABO为60°或72°.
【点睛】
本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.
17.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠
解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;
(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).
(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.
【详解】
解:(1)在图2中有3个以线段AC为边的“8字形”,
故答案为3;
(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠P﹣∠B,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,
∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,
∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为360°.
18.(1)见解析;(2)∠BGD=;(
展开阅读全文