资源描述
人教版七年级下册数学期末学业水平题及答案
一、选择题
1.1.96的算术平方根是()
A.0.14 B.1.4 C. D.±1.4
2.在下列图形中,不能通过其中一个三角形平移得到的是( )
A. B. C. D.
3.点在平面直角坐标系中所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题是假命题的是( )
A.对顶角相等
B.两条直线被第三条直线所截,同位角相等
C.在同一平面内,垂直于同一条直线的两条直线互相平行
D.在同一平面内,过直线外一一点有且只有一条直线与已知直线平行
5.如图,直线,,则的度数为( )
A. B. C. D.
6.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.3 D.0.1333
7.如图,AB//CD,∠EBF=2∠ABE,∠ECF=3∠DCE,设∠ABE=α,∠E=β,∠F=γ,则α,β,γ的数量关系是( )
A.4β﹣α+γ=360° B.3β﹣α+γ=360°
C.4β﹣α﹣γ=360° D.3β﹣2α﹣γ=360°
8.如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),……,按此规律下去,则点A2021的坐标是( ).
A.(673,2021) B.(674,2021) C.(-673,2021) D.(-674,2021)
九、填空题
9.9的算术平方根是 .
十、填空题
10.点(3,0)关于y轴对称的点的坐标是_______
十一、填空题
11.如图.已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为________.
十二、填空题
12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°.
十三、填空题
13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.
十四、填空题
14.对于正数x规定,例如:,则f (2020)+f (2019)+……+f (2)+f (1)+=___________
十五、填空题
15.若点P在轴上,则点P的坐标为____.
十六、填空题
16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______
十七、解答题
17.(1)
(2)
十八、解答题
18.(1)已知am=3,an=5,求a3m﹣2n的值.
(2)已知x﹣y=,xy=,求下列各式的值:
①x2y﹣xy2;
②x2+y2.
十九、解答题
19.阅读并完成下列的推理过程.
如图,在四边形ABCD中,E、F分别在线段AB、AD上,连结ED、EF,已知∠AFE=∠CDF,∠BCD+∠DEF=180°.证明BC∥DE;
证明:∵∠AFE=∠CDF(已知)
∴EF∥CD ( )
∴∠DEF=∠CDE( )
∵∠BCD+∠DEF=180°( )
∴ ( )
∴BC∥DE( )
二十、解答题
20.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,每个小正方形边长为1个单位长度.
(1)将△ABC向右平移6个单位,再向下平移3个单位得到△A1B1C1,画出图形,并写出各顶点坐标;
(2)求△ABC的面积.
二十一、解答题
21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分.
请解答下列问题:
(1)的整数部分是____,小数部分是_____.
(2)如果的小数部分是a,的整数部分是b,求的值.
(3)已知,其中x是正整数,,求的相反数.
二十二、解答题
22.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形.
(1)大正方形的边长是________;
(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.
二十三、解答题
23.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0
(1)α= ,β= ;直线AB与CD的位置关系是 ;
(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;
(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.
二十四、解答题
24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分.
(1)求的度数.
(2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒.
①在旋转过程中,若边,求的值;
②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值.
二十五、解答题
25.已知,,点为射线上一点.
(1)如图1,写出、、之间的数量关系并证明;
(2)如图2,当点在延长线上时,求证:;
(3)如图3,平分,交于点,交于点,且:,,,求的度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根即可得出答案.
【详解】
解:∵,
∴1.96的算术平方根是1.4,
故选:B.
【点睛】
本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.
2.D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D
解析:D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.
故选:D.
【点睛】
本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.
3.B
【分析】
根据坐标的特点即可求解.
【详解】
点在平面直角坐标系中所在的象限是第二象限
故选B.
【点睛】
此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.
4.B
【分析】
根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.
【详解】
A、对顶角相等;真命题;
B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;
C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;
D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;
故选:B.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.
5.B
【分析】
记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.
【详解】
如图,过点B作BD∥l1,
∵,
∴BD∥l1∥l2,
∴∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,
∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,
又∵∠2+∠3=216°,
∴216°+(180°-∠1)=360°,
∴∠1=36°.
故选:B.
【点睛】
本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键.
6.C
【分析】
根据立方根的变化特点和给出的数据进行解答即可.
【详解】
解:∵≈1.333,
∴,
故选:C.
【点睛】
本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.
7.A
【分析】
由∠EBF=2∠ABE,可得∠EBF=2α.由∠EBF+∠BEC+∠F+∠ECF=360°,可得∠ECF=360°﹣(2α+β+γ),那么∠DCE=.由∠BEC=∠M+∠DCE,可得∠M=∠BEC﹣∠DCE.根据AB//CD,得∠ABE=∠M,进而推断出4β﹣α+γ=360°.
【详解】
解:如图,分别延长BE、CD并交于点M.
∵AB//CD,
∴∠ABE=∠M.
∵∠EBF=2∠ABE,∠ABE=α,
∴∠EBF=2α.
∵∠EBF+∠BEC+∠F+∠ECF=360°,
∴∠ECF=360°﹣(2α+β+γ).
又∵∠ECF=3∠DCE,
∴∠DCE=.
又∵∠BEC=∠M+∠DCE,
∴∠M=∠BEC﹣∠DCE=β﹣.
∴β﹣=α.
∴4β﹣α+γ=360°.
故选:A.
【点睛】
本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键.
8.B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A
解析:B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),
∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),
∵3×674-1=2021,
∴n=674,所以A 2021(674,2021).
故选B.
【点睛】
本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键.
九、填空题
9.【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
解析:【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
十、填空题
10.(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴
解析:(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴对称的点的坐标为(-3,0).
故答案为:(-3,0).
【点睛】
本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
解析:120°
【分析】
由角平分线的定义可得,,又由,得,;设,,则;再根据四边形内角和定理得到,最后根据即可求解.
【详解】
解:和的角平分线相交于,
,,
又,
,,
设,,
,
在四边形中,,,,
,
,
,
,
故答案为:.
【点睛】
本题考查了平行线的判定和性质,正确的识别图形是解题的关键.
十二、填空题
12.40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠D
解析:40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠DAE+∠CAB=180°-∠DAC=90°
∴∠1+∠2=90°
∴∠2=90°-∠1=40°
故答案为:40.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14.5
【分析】
由已知可求,则可求.
【详解】
解:,
,
,
,
故答案为:2019.5
【点睛】
本题考查代数值求值,根据所给条件,探索出是解题的关键.
解析:5
【分析】
由已知可求,则可求.
【详解】
解:,
,
,
,
故答案为:2019.5
【点睛】
本题考查代数值求值,根据所给条件,探索出是解题的关键.
十五、填空题
15.(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐
解析:(4,0).
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
∵点P(m+3,m-1)在x轴上,
∴m-1=0,
解得m=1,
所以,m+3=1+3=4,
所以,点P的坐标为(4,0).
故答案为:(4,0).
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
十六、填空题
16.(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解
解析:(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
解:∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(3)个三角形的直角顶点的坐标是;
观察图形不难发现,每3个三角形为一个循环组依次循环,
∴一次循环横坐标增加12,
∵2013÷3=671
∴第(2013)个三角形是第671组的第三个直角三角形,
其直角顶点与第671组的第三个直角三角形顶点重合,
∴第(2013)个三角形的直角顶点的坐标是即.
故答案为:.
【点睛】
本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.
十七、解答题
17.(1);(2).
【分析】
(1)先求算术平方根,再计算乘法,后加减即可得到答案;
(2)先求立方根,算术平方根,再计算加减即可得到答案.
【详解】
解:(1)
(2)
【点睛】
解析:(1);(2).
【分析】
(1)先求算术平方根,再计算乘法,后加减即可得到答案;
(2)先求立方根,算术平方根,再计算加减即可得到答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键.
十八、解答题
18.(1);(2)①;②
【分析】
(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
(2)①利用提公因式法因式分解解答即可;
②根据完全平方公式计算即可.
【详解】
解:(1),,
解析:(1);(2)①;②
【分析】
(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
(2)①利用提公因式法因式分解解答即可;
②根据完全平方公式计算即可.
【详解】
解:(1),,
;
(2)①,,
;
②,,
.
【点睛】
本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.
十九、解答题
19.同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.
【分析】
根据平行线的性质与判定填空即可
【详解】
证明:∵∠AFE=∠CD
解析:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行.
【分析】
根据平行线的性质与判定填空即可
【详解】
证明:∵∠AFE=∠CDF(已知)
∴EF∥CD (同位角相等,两直线平行)
∴∠DEF=∠CDE( 两直线平行,内错角相等)
∵∠BCD+∠DEF=180°(已知)
∴∠BCD+∠CDE=180°( 等量代换)
∴BC∥DE( 同旁内角互补,两直线平行)
故答案为:同位角相等,两直线平行;两直线平行,内错角相等;已知;∠BCD+∠CDE=180°;等量代换;同旁内角互补,两直线平行
【点睛】
本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
二十、解答题
20.(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)△ABC的面积为11.
【分析】
(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位
解析:(1)见解析;A1(1,-2)、B1(4,2)、C1(5,-4)(2)△ABC的面积为11.
【分析】
(1)根据平移的规律得到A1,B1,C1点,再顺次连接即可;根据A1,B1,C1在坐标系中的位置写出各点坐标即可;
(2)根据图形的面积的和差求出△ABC的面积即可.
【详解】
解:如图所示,
、、;
.
【点睛】
本题考查了利用平移变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
二十一、解答题
21.(1)3;;(2)7;(3)
【分析】
(1)先求出的取值范围,即可求出的整数部分,从而求出结论;
(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;
(
解析:(1)3;;(2)7;(3)
【分析】
(1)先求出的取值范围,即可求出的整数部分,从而求出结论;
(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;
(3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数.
【详解】
解:(1)∵3<<4,
∴的整数部分是3,小数部分是
故答案为:3;;
(2)∵
∴
∴
∴的小数部分a=-2=
∵
∴
∴的整数部分b=4
∴
=+4
=7;
(3)∵
∴
∴
∴的整数部分为2,小数部分为-2=
∵,其中x是正整数,,
∴,y=
∴=
∴的相反数为.
【点睛】
此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键.
二十二、解答题
22.(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再
解析:(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.
【详解】
解:(1)两个正方形面积之和为:2×8=16(cm2),
∴拼成的大正方形的面积=16(cm2),
∴大正方形的边长是4cm;
故答案为:4;
(2)设长方形纸片的长为2xcm,宽为xcm,
则2x•x=14,
解得:,
2x=2>4,
∴不存在长宽之比为且面积为的长方形纸片.
【点睛】
本题考查了算术平方根,能够根据题意列出算式是解此题的关键.
二十三、解答题
23.(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于
解析:(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得.
【详解】
解:(1),
,,
,
,,
,
;
故答案为:20、20,;
(2);
理由:由(1)得,
,
,
,
,
,
,
;
(3)的值不变,;
理由:如图3中,作的平分线交的延长线于,
,
,
,,
,
,
,
设,,
则有:,
可得,
,
.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
二十四、解答题
24.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=s.
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,
∴∠KRM=90°-(180°-60°-4t)=4t-30°,
∴5t+4t-30°=180°,
∴t=s.
综上所述,满足条件的t的值为s或s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
二十五、解答题
25.(1),证明见解析;(2)证明见解析;(3).
【分析】
(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)设CD与AE交于点H
解析:(1),证明见解析;(2)证明见解析;(3).
【分析】
(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;
(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.
【详解】
解:(1)∠AED=∠EAF+∠EDG.理由:如图1,
过E作EH∥AB,
∵AB∥CD,
∴AB∥CD∥EH,
∴∠EAF=∠AEH,∠EDG=∠DEH,
∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)证明:如图2,设CD与AE交于点H,
∵AB∥CD,
∴∠EAF=∠EHG,
∵∠EHG是△DEH的外角,
∴∠EHG=∠AED+∠EDG,
∴∠EAF=∠AED+∠EDG;
(3)∵AI平分∠BAE,
∴可设∠EAI=∠BAI=α,则∠BAE=2α,
如图3,∵AB∥CD,
∴∠CHE=∠BAE=2α,
∵∠AED=20°,∠I=30°,∠DKE=∠AKI,
∴∠EDI=α+30°-20°=α+10°,
又∵∠EDI:∠CDI=2:1,
∴∠CDI=∠EDK=α+5°,
∵∠CHE是△DEH的外角,
∴∠CHE=∠EDH+∠DEK, 即2α=α+5°+α+10°+20°,
解得α=70°,
∴∠EDK=70°+10°=80°,
∴△DEK中,∠EKD=180°-80°-20°=80°.
【点睛】
本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.
展开阅读全文