资源描述
部编版八年级下册数学期末试卷达标检测卷(Word版含解析)
一、选择题
1.在实数范围内有意义,实数a的取值范围是( )
A.a>0 B.a>1 C.a≥﹣2 D.a>﹣1
2.下列各组数不能作为直角三角形的三边长的是( )
A.8,15,17 B.7,12,15 C.5,12,13 D.7,24,25
3.如图,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形,则应增加的条件是( )
A.AB=CD B.∠BAD=∠DCB C.AC=BD D.∠ABC+∠BAD=180°
4.某公司要招聘一位高管,面试时,一位应聘者的基本知识、表达能力,决策能力的得分分别是90分、82分,83分,若依次按20%,40%,40%的比例确定成绩,则应聘者的最终面试成绩是( )
A.82分 B.83分 C.84分 D.85分
5.如图,点E是边长为8的正方形ABCD的对角线BD上的动点,以AE为边向左侧作正方形AEFG,点P为AD的中点,连接PG,在点E运动过程中,线段PG的最小值是( )
A.2 B. C.2 D.4
6.如图,在Rt△ABC中,=90°,沿着过点B的一条直线BE折叠△ABC,使点C恰好落在AB的中点D处,则的度数为( )
A.30° B.45° C.60° D.75°
7.如图,数轴上A点表示的数为,B点表示的数是1.过点B作,且,以点A为圆心,的长为半径作弧,弧与数轴的交点D表示的数为( )
A. B. C. D.
8.正方形,,,…,按如图所示的方式放置,点,…和点,…分别在直线和轴上.则点的纵坐标是( )
A. B. C. D.
二、填空题
9.若二次根式有意义,则x的取值范围是________.
10.已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
11.若直角三角形的两边长分别为,,那么第三边长是______.
12.如图,在中,点,分别是边,的中点,点是线段上的一点,连接,,.已知,,则的长是________.
13.若正比例函数y=kx的图象经过点(2,﹣4),则k的值为_____.
14.如图,四边形ABCD的对角线AC与BD交于点O,AC⊥BD,且AC平分BD,若添加一个条件_____,则四边形ABCD为菱形.
15.如图,在平面直角坐标系中,点A,A1,A2,…在x轴上,点P,P1,P2,…在直线l:y=kx+(k>0)上,∠OPA=90°,点P(1,1),A(2,0),且AP1,A1P2,…均与OP平行,A1P1,A2P2,…均与AP平行,则有下列结论:①直线AP1的函数解析式为y=x﹣2;②点P2的纵坐标是;③点P2021的纵坐标为()2021.其中正确的是_____(填序号).
16.如图,对折矩形纸片ABCD,使边AD与BC重合,折痕为EF,将纸片展平后再次折叠,使点A落在EF上的点G处,折痕BH交EF于点M.若=m(m>1),则的值为____.(用含m的代数式表示)
三、解答题
17.计算
(1)(+)(-)
(2)
18.有一架米长的梯子搭在墙上,刚好与墙 头对齐,此时梯脚与墙的距离是米
(1)求墙的高度?
(2)若梯子的顶端下滑米,底端将水平动多少米?
19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.
(1)在图1中画一个面积为4的菱形;
(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.
20.如图,∠A=∠B=40°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.
(1)求证:APMBPN;
(2)当α等于多少度时,以A、M、B、N为顶点的四边形是菱形?
21.[阅读材料]
我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S=(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.
[解决问题]
(1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.
(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.
22.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务).
(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;
(2)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?
23.定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.
(提出问题)
(1)如图①,四边形与四边形都是正方形,,求证:四边形是“等垂四边形”;
(类比探究)
(2)如图②,四边形是“等垂四边形”,,连接,点,,分别是,,的中点,连接,,.试判定的形状,并证明;
(综合运用)
(3)如图③,四边形是“等垂四边形”,,,则边长的最小值为________.
24.如图,在平面直角坐标系中,直线与轴、轴分别交、两点,与直线相交于点,
(1)求点、的坐标;
(2)求和的值;
(3)若直线与轴相交于点.动点从点开始,以每秒个单位的速度向轴负方向运动,设点的运动时间为秒,
①若点在线段上,且的面积为,求的值;
②是否存在的值,使为等腰三角形?若存在,求出的值;若不存在,请说明理由.
25.如图,两个全等的等边三角形△ABC与△ACD,拼成的四边形ABCD中,AC=6,点E、F分别为AB、AD边上的动点,满足BE=AF,连接EF交AC于点G,连接BD与CE、AC、CF分别交于点M、O、N,且AC⊥BD.
(1)求证:△CEF是等边三角形.
(2)△AEF的周长最小值是 .
(3)若BE=3,求证:BM=MN=DN.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据二次根式有意义的条件即可求出a的取值范围.
【详解】
解:由题意可知:a+2≥0,
∴a≥-2.
故选:C.
【点睛】
本题考查二次根式有意义,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.
2.B
解析:B
【分析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案.
【详解】
解:A、82+152=172,符合勾股定理的逆定理,故此选项不符合题意;
B、72+122≠152,不符合勾股定理的逆定理,故此选项符合题意;
C、52+122=132,符合勾股定理的逆定理,故此选项不符合题意;
D、72+242=252,符合勾股定理的逆定理,故此选项不符合题意.
故选:B.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3.B
解析:B
【解析】
【分析】
根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可.
【详解】
A错误,当四边形是等腰梯形时,也满足条件.
B正确,∵,
∴,
∵,
∴,
∴,
∴四边形是平行四边形.
C错误,当四边形是等腰梯形时,也满足条件.
D错误,∵,
∴,与题目条件重复,无法判断四边形是不是平行四边形.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题关键是熟练掌握平行四边形的判定方法.
4.C
解析:C
【解析】
【分析】
根据加权平均数的计算公式进行计算,即可得出答案.
【详解】
解:根据题意得:
90×20%+82×40%+83×40%=84(分);
故选:C.
【点睛】
本题主要考查了加权平均数的计算,掌握加权平均数的定义是解题的关键.
5.C
解析:C
【分析】
连接DG,可证△AGD≌△AEB,得到G点轨迹,利用点到直线的最短距离进行求解.
【详解】
解:连接DG,如图,
,
∵四边形ABCD、四边形AEFG均为正方形,
∴∠DAB=∠GAE=90°,AB=AD,AG=AE,
∵∠GAD+∠DAE=∠DAE+∠BAE,
∴∠GAD=∠BAE,
∵AB=AD,AG=AE,
∴△AEB≌△AGD(SAS),
∴∠PDG=∠ABE=45°,
∴G点轨迹为线段DH,
当PG⊥DH时,PG最短,
在Rt△PDG中,∠PDG=45°,P为AD中点,DP=4,
设PG=x,则DG=x,由勾股定理得,
x2+x2=42,
解得x=2.
故选:C.
【点睛】
本题主要考查正方形的性质,全等三角形的判定和性质,掌握连接DG,得到G点轨迹,是解题的关键.
6.A
解析:A
【解析】
【分析】
根据题意可知∠CBE=∠DBE,DE⊥AB,点D为AB的中点,∠EAD=∠DBE,根据三角形内角和定理列出算式,计算得到答案.
【详解】
解:由题意可知∠CBE=∠DBE,
∵DE⊥AB,点D为AB的中点,
∴EA=EB,
∴∠EAD=∠DBE,
∴∠CBE=∠DBE=∠EAD,
∴∠CBE+∠DBE+∠EAD=90°,
∴∠A=30°,
故选:A.
【点睛】
本题考查的是翻折变换的知识,理解翻折后的图形与原图形全等是解题的关键,注意三角形内角和等于180°.
7.C
解析:C
【解析】
【分析】
根据题意先求得的长,根据勾股定理求得的长,根据题意,进而求得点表示的数.
【详解】
依题意,数轴上A点表示的数为,B点表示的数是1,
,
,,
,
,
数轴上A点表示的数为,
D表示的数为.
故选C.
【点睛】
本题考查了实数与数轴,勾股定理,勾股定理求得是解题的关键.
8.B
解析:B
【分析】
先根据一次函数图象上点的坐标特征及正方形的性质确定点A1,A 2,A3,A4,A5进而确定C1,C 2,C3,C4,C5的坐标并总结出点Cn的纵坐标的规律为2n-1(n为正整数),将n=2030代入即可解答.
【详解】
解:由题意可知,A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8, A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,
∴C1,C2,C3,C4,,C5,…Cn的纵坐标分别为1,2,4,8,16,…2n-1
∴的纵坐标为22020-1=22019.
故答案为B.
【点睛】
本题考查了一次函数图像上点的坐标特征、正方形的性质以及找规律,找出Cn点纵坐标的规律为2n-1(n为正整数)是解答本题的关键.
二、填空题
9.
【解析】
【分析】
根据二次根式被开放数为非负数,分式的分母不为零求解即可.
【详解】
解:∵二次根式有意义,
∴2-x>0,解得:x<2.
故答案为:x<2.
【点睛】
本题考查了二次根式有意义的条件,熟练掌握二次根式被开放数为非负数是解题的关键.
10.2
【解析】
【分析】
利用菱形的面积等于对角线乘积的一半求解.
【详解】
解:菱形的面积=×1×4=2.
故答案为2.
【点睛】
本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
11.2或
【解析】
【分析】
已知直角三角形的两边长,但并没有明确是直角边还是斜边,因此分两种情况讨论:是直角边,是斜边;,均为直角边;可根据勾股定理求出上述两种情况下第三边的长.
【详解】
当是直角边,是斜边,
第三边的长,
当,均为直角边,
第三边的长,
故答案为:2或.
【点睛】
本题考查了勾股定理,由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论.
12.D
解析:2
【分析】
利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF=AB.所以由图中线段间的和差关系来求线段EF的长度即可.
【详解】
解:∵点D、E分别是边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=10,
∴DE=BC=5.
∵∠AFB=90°,D是AB的中点,AB=6,
∴DF=AB=3,
∴EF=DE-DF=5-3=2.
故答案为:2.
【点睛】
本题考查了三角形的中位线定理的应用以及直角三角形斜边的中线定理,解题的关键是了解三角形的中位线平行于第三边且等于第三边的一半.
13.-2
【分析】
因为正比例函数y=kx的图象经过点(2,﹣4),代入解析式,解之即可求得k.
【详解】
解:∵正比例函数y=kx的图象经过点(2,﹣4),
∴﹣4=2k,
解得:k=﹣2.
故答案为:﹣2.
【点睛】
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
14.A
解析:OA=OC
【分析】
添加条件OA=OC,先证四边形ABCD是平行四边形,再由AC⊥BD,即可得出平行四边形ABCD是菱形.
【详解】
.解:添加一个条件OA=OC,则四边形ABCD为菱形,
理由如下:
∵AC平分BD,OA=OC,
∴四边形ABCD是平行四边形,
又∵AC⊥BD,
∴平行四边形ABCD是菱形,
故答案为:OA=OC.
【点睛】
此题主要考查了菱形的判定以及平行四边形的判定,熟练掌握菱形的判定和平行四边形的判定与性质是解题的关键.
15.①②③
【分析】
由已知易求得直线的解析式为:,直线为:,进而根据待定系数法可求得 的解析式为:即可判断①;解析式联立构成方程组可求得 的坐标,同理求得 的坐标,即可判断②;由、的坐标得出规律即可得
解析:①②③
【分析】
由已知易求得直线的解析式为:,直线为:,进而根据待定系数法可求得 的解析式为:即可判断①;解析式联立构成方程组可求得 的坐标,同理求得 的坐标,即可判断②;由、的坐标得出规律即可得出点 的纵坐标为,即可判断③.
【详解】
解:设的解析式为,
∵P(1,1),
∴直线OP为,
∵AP1∥OP,
∴k=1,即,
∵A(2,0),
∴2+b=0,解得b=﹣2,
∴AP1的解析式为,故①正确;
∵点P,P1,P2,…在直线l:(k>0)上,
∴1=k+,解得k=,
∴直线l为:,
解得,
∴,
设的解析式为,
代入可得,的解析式为:,
∴A1的坐标为(,0),
同理求得A1P2的解析式为:,
解得,
∴P2纵坐标为,故②正确;
∵P1纵坐标为,P2纵坐标为=()2,
以此类推,点P2021的纵坐标为()2021.故③正确.
故答案为:①②③.
【点睛】
本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,总结出点的纵坐标的规律是解题的关键.
16.【分析】
根据折叠的性质得到AE=BE,AB=BG,AH=HG,∠A=∠BGH=90°,证明△HGM是等边三角形,设AB=1,BC=m,利用勾股定理求出EM,求出MG,GF的长,即可得到比值.
【
解析:
【分析】
根据折叠的性质得到AE=BE,AB=BG,AH=HG,∠A=∠BGH=90°,证明△HGM是等边三角形,设AB=1,BC=m,利用勾股定理求出EM,求出MG,GF的长,即可得到比值.
【详解】
解:由第一次折叠可知:AE=BE,
由第二次折叠可知:AB=BG,AH=HG,∠A=∠BGH=90°,
∴BG=2BE,
∴∠BGE=30°,∠EBG=60°,
∴∠ABH=∠GBH=30°,∠HGM=60°,
∴BM=2EM,∠BME=∠HMG=60°,
∴△HGM是等边三角形,
∵=m,
∴设AB=1,BC=m,
∴BG=1,AE=BE=,AD=EF=m,
在△BEM中,,即,
∴,又E为AB中点,EM∥AD,
∴AH=2EM==HG=MG,
∴GF=EF-EM-MG=,
∴=,
故答案为:.
【点睛】
本题考查了矩形的性质,折叠问题,等边三角形的判定和性质,直角三角形的性质,勾股定理,知识点较多,解题的关键是利用基本性质得到线段之间的关系.
三、解答题
17.(1)4;(2)
【分析】
(1)根据二次根式运算法则结合平方差公式进行计算即可;
(2)先将题目中的二次根式化解为最简二次根式,然后根据二次根式的加减运算法则计算即可.
【详解】
解:(1)原式;
解析:(1)4;(2)
【分析】
(1)根据二次根式运算法则结合平方差公式进行计算即可;
(2)先将题目中的二次根式化解为最简二次根式,然后根据二次根式的加减运算法则计算即可.
【详解】
解:(1)原式;
(2)原式
.
【点睛】
本题考查了二次根式的混合运算,平方差公式,熟练掌握二次根式的混合运算法则是解本题的关键.
18.(1)4米;(2)1米
【分析】
(1)利用勾股定理可以得出梯子的顶端距离地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的
解析:(1)4米;(2)1米
【分析】
(1)利用勾股定理可以得出梯子的顶端距离地面的高度.
(2)由(1)可以得出梯子的初始高度,下滑4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离.
【详解】
解:(1)根据勾股定理:
墙的高度(米;
(2)梯子下滑了1米,即梯子距离地面的高度(米.
根据勾股定理:(米
则(米,即底端将水平动1米.
答:(1)墙的高度是4米;
(2)若梯子的顶端下滑1米,底端将水平动1米.
【点睛】
本题考查了勾股定理的应用,要求熟练掌握利用勾股定理求直角三角形边长.
19.(1)见解析;(2)见解析.
【解析】
【分析】
(1)直接利用菱形的性质画出符合题意的菱形;
(2)利用网格结合矩形的判定和性质得出答案.
【详解】
(1)如图1所示:其四边形是菱形,且面积为4;
解析:(1)见解析;(2)见解析.
【解析】
【分析】
(1)直接利用菱形的性质画出符合题意的菱形;
(2)利用网格结合矩形的判定和性质得出答案.
【详解】
(1)如图1所示:其四边形是菱形,且面积为4;
(2)如图2所示:其四边形是边长为无理数的矩形.
【点睛】
本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.
20.(1)见解析;(2)90°
【分析】
(1)利用判定定理进行证明即可;
(2)根据(1)能得出对角线互相平分,得出是平行四边形,即当∠BPN=90°时,AB⊥MN,以A、M、B、N为顶点的四边形是菱
解析:(1)见解析;(2)90°
【分析】
(1)利用判定定理进行证明即可;
(2)根据(1)能得出对角线互相平分,得出是平行四边形,即当∠BPN=90°时,AB⊥MN,以A、M、B、N为顶点的四边形是菱形.
【详解】
(1)证明:P为AB中点,
PA=PB,
在△APM和△BPN中,,
△APM△BPN;
(2)连接MB、NA,
由(1)知△APM△BPN,
PM=PN,
PA=PB,
四边形MBNA为平行四边形,
当∠BPN=90°时,AB⊥MN,
四边形AMBN为菱形.
【点睛】
本题考查了三角形全等的判定及性质、菱形的判定,解题的关键是掌握相关的判定定理.
21.(1)S=12;(2)S=
【解析】
【分析】
(1)利用三角形的三边均为整数,可选择海伦公式进行计算;
(2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算.
【详解】
解:(1),
由海伦
解析:(1)S=12;(2)S=
【解析】
【分析】
(1)利用三角形的三边均为整数,可选择海伦公式进行计算;
(2)利用三角形的三边中有无理数,可选择秦九韶公式进行计算.
【详解】
解:(1),
由海伦公式得:
,
,
;
(2)由秦九韶公式得:
,
,
,
.
【点睛】
本题主要考查了数学常识,三角形的面积,二次根式的应用,根据三角形三边数字的特征选择恰当的公式是解题的关键.
22.(1)(2)380天,55元
【分析】
(1)根据函数图像,待定系数法求解析式即可;
(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值
【详解】
(1)当时
解析:(1)(2)380天,55元
【分析】
(1)根据函数图像,待定系数法求解析式即可;
(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值
【详解】
(1)当时,设与的函数关系是为,有函数图像可知,函数图像经过点
解得
当时,设与的函数关系是为,有函数图像可知,函数图像经过点
解得
综上所述,
(2)设设需要天,该店能还清所有债务,根据题意,
当时,
当时,的最大值为
即,
当时,
当时,的最大值为
即,
综上所述,时,即最早需要天还清所有债务,此时服装定价为元
【点睛】
本题考查了一次函数的应用,二次函数的应用,掌握二次函数的性质是解题的关键.
23.(1)见解析;(2)△EFG是等腰直角三角形,理由见解析(3)
【分析】
(1)延长,交于点,先证,得,.结合,知,即可得.从而得证;
(2)延长,交于点,由四边形是“等垂四边形”, 知,,从而得,
解析:(1)见解析;(2)△EFG是等腰直角三角形,理由见解析(3)
【分析】
(1)延长,交于点,先证,得,.结合,知,即可得.从而得证;
(2)延长,交于点,由四边形是“等垂四边形”, 知,,从而得,根据三个中点知,,,,,据此得,,.由可得答案;
(3)延长,交于点,分别取,的中点,.连接,,,由及.可得答案.
【详解】
解:(1)如图①,延长,交于点,
四边形与四边形都为正方形,
,,.
.
.
,.
,
,
即,
.
.
又,
四边形是“等垂四边形”.
(2)是等腰直角三角形.
理由如下:如图②,延长,交于点,
四边形是“等垂四边形”, ,
,,
点,,分别是,,的中点,
,,,,
,,.
.
是等腰直角三角形.
(3)延长,交于点,分别取,的中点,.连接,,,
则,
由(2)可知.
最小值为,
故答案为:.
【点睛】
本题是四边形的综合问题,解题的关键是掌握正方形的性质,全等三角形的判定与性质,三角形中位线定理及等腰直角三角形的性质等知识点.
24.(1),;(2);(3)①;②存在,或或或
【解析】
【分析】
(1)分别使,,代入,即可求出点、的坐标;
(2)把代入直线,可求,可得C点的坐标,再把C点坐标代入直线,即可得出的值;
(3)①根据
解析:(1),;(2);(3)①;②存在,或或或
【解析】
【分析】
(1)分别使,,代入,即可求出点、的坐标;
(2)把代入直线,可求,可得C点的坐标,再把C点坐标代入直线,即可得出的值;
(3)①根据的面积公式列等式可得的值;
②存在,分三种情况:
当时,如图①,当时,如图②,当时,如图③,分别求的值即可.
【详解】
解(1)在中
当时,
当时,
,
(2)点在直线上
又点也在直线上
即
解得
(3)在中
当时,
①设,则
过作于,则
由的面积为
得
解得
②过作于
则,
当时,如图①所示
则
当时,如图②所示
,
当时,如图③所示
设
则,
解得
综上所述,当或或或时,为等腰三角形
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.
25.(1)见解析;(2)6+3;(3)见解析
【分析】
(1)证明△BEC≌△AFC(SAS),可得结论.
(2)△AEF的周长=AE+AF+EF=AE+BE+EF=AB+EF=6+EF,推出EF的值最
解析:(1)见解析;(2)6+3;(3)见解析
【分析】
(1)证明△BEC≌△AFC(SAS),可得结论.
(2)△AEF的周长=AE+AF+EF=AE+BE+EF=AB+EF=6+EF,推出EF的值最小时,△AEF的周长最小,因为△ECF是等边三角形,推出EF=CE,推出当CE⊥AB时,CE的值最小.
(3)求出BD=6,再求出BM=DN=2,可得BM=MN=DN=2解决问题.
【详解】
(1)证明:∵△ABC,△ACD是全等的等边三角形,
∴AC=BC,∠ABC=∠DAC=∠BCA=60°,
∵AF=BE,在△CBE和△CAF中,
,
∴△BEC≌△AFC(SAS),
∴CE=CF,∠BCE=∠ACF,
∴∠BCE+∠ACE=∠ACF+∠ACE,
∴∠ECF=∠BCA=60°,
∴△CEF是等边三角形.
(2)解:∵△AEF的周长=AE+AF+EF=AE+BE+EF=AB+EF=6+EF,
∴EF的值最小时,△AEF的周长最小,
∵△ECF是等边三角形,
∴EF=CE,
∴当CE⊥AB时,CE的值最小,
∵三角形ABC是等边三角形,
∴∠ABC=60°,
∴∠BCE=30°,
∴BE=,
∴CE=,
∴△AEF的周长的最小值为6+3,
故答案为:6+3.
(3)证明:∵△ABC,△ACD是全等的等边三角形,AC⊥BD
∴AO=CO,BO=DO,∠ABO=∠ABC=30°
∵BE=3,AB=AC=6,
∴点E为AB中点,点F为AD中点,
∴AO=AB=3,
∴BO=,
∴BD=6,
∵△ABC是等边三角形,BE=AE=3,
∴CE⊥AB,
∴BM=2EM,
∴
∴BM=2,
同理可得DN=2,
∴MN=BD﹣BM﹣DN=2
∴BM=MN=DN.
【点睛】
此题考查了三角形全等,勾股定理,线段最值问题,解题的关键是根据题意找到题目中边角之间的关系.
展开阅读全文