资源描述
人教中学七年级下册数学期末学业水平试卷含答案
一、选择题
1.下列说法正确的是()
A.4的平方根是2 B.的平方根是±4
C.25的平方根是±5 D.﹣36的算术平方根是6
2.下列图中的“笑脸”,由如图平移得到的是( )
A. B. C. D.
3.已知点在轴的负半轴上,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.以下命题是真命题的是( )
A.相等的两个角一定是对顶角
B.过直线外一点有且只有一条直线与已知直线平行
C.两条平行线被第三条直线所截,内错角互补
D.在同一平面内,垂直于同一条直线的两条直线互相垂直
5.如图,,平分,平分,,,则下列结论:①,②,③,④.其中正确的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
6.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.3 D.0.1333
7.如图,小明从A处出发沿北偏东方向行走至B处,又沿北偏西方向行走至C处,则的度数是( )
A. B. C. D.
8.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A100的坐标为( )
A.(101,100) B.(150,51) C.(150,50) D.(100,53)
九、填空题
9.若=0,则=________ .
十、填空题
10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______.
十一、填空题
11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°.
十二、填空题
12.如图,,平分,交于,若,则的度数是______°.
十三、填空题
13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______.
十四、填空题
14.任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,对144只需进行_____次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_________.
十五、填空题
15.已知点,轴,,则点C的坐标是______ .
十六、填空题
16.如图,动点在平面直角坐标系中按图中的箭头所示方向运动,第一次从原点运动到点,第次运动到点,第次接着运动到点按这样的运动规律,经过第次运动后动点的坐标是________.
十七、解答题
17.计算:(1) (2)
十八、解答题
18.求下列各式中的x值:
(1)25x2-64=0
(2)x3-3=
十九、解答题
19.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)
解:DE∥BC.理由如下:
∵∠1+∠4=180°(平角的定义),∠1+∠2=180°( ),
∴∠2=∠4( ).
∴ ∥ ( ).
∴∠3= ( ).
∵∠3=∠B( ),
∴ = ( ).
∴DE∥BC( ).
二十、解答题
20.在平面直角坐标系xOy中,点A的坐标为(0,4),线段MN的位置如图所示,其中点M的坐标为(﹣3,﹣1),点N的坐标为(3,﹣2).
(1)将线段MN平移得到线段AB,其中点M的对应点为A,点N的对应点为B.画出平移后的线段AB.
①点M平移到点A的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;
②点B的坐标为 ;
(2)在(1)的条件下,若点C的坐标为(4,0),连接AC,BC,求△ABC的面积.
二十一、解答题
21.阅读下面的文字,解答问题.
大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题:
(1)的整数部分是___________,小数部分是___________;
(2)若设整数部分是,小数部分是,求的值.
二十二、解答题
22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?
二十三、解答题
23.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.
(1)若时,则___________;
(2)试求出的度数(用含的代数式表示);
(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)
二十四、解答题
24.如图,直线,一副三角板(,,)按如图①放置,其中点在直线上,点均在直线上,且平分.
(1)求的度数.
(2)如图②,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应点分别为).设旋转时间为秒.
①在旋转过程中,若边,求的值;
②若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为).请直接写出当边时的值.
二十五、解答题
25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根和算术平方根的定义判断即可.
【详解】
解:A.4的平方根是±2,故错误,不符合题意;
B.的平方根是±2,故错误,不符合题意;
C.25的平方根是±5,故正确,符合题意;
D.-36没有算术平方根,故错误,不符合题意;
故选:C.
【点睛】
本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.
2.D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
解析:D
【分析】
根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.
【详解】
解:A、B、C都是由旋转得到的,D是由平移得到的.
故选:D.
【点睛】
本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
3.A
【分析】
根据y负半轴上点的纵坐标是负数判断出a,再根据各象限内点的坐标特征解答.
【详解】
∵点P(0,a)在y轴的负半轴上,
∴,
∴,
,
∴点M(-a,-a+5)在第一象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键.
4.B
【分析】
利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、相等的两个角不一定是对顶角,故原命题错误,是假命题,不符合题意;
B、过直线外一点有且只有一条直线与已知直线平行,正确,是真命题,符合题意;
C、两条平行线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;
D、在同一平面内,垂直于同一条直线的两条直线互相平行,故原命题错误,是假命题,不符合题意,
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大.
5.B
【分析】
根据角平分线的性质可得,,,再利用平角定义可得∠BCF=90°,进而可得①正确;首先计算出∠ACB的度数,再利用平行线的性质可得∠2的度数,从而可得∠1的度数;利用三角形内角和计算出∠3的度数,然后计算出∠ACE的度数,可分析出③错误;根据∠3和∠4的度数可得④正确.
【详解】
解:如图,
∵BC平分∠ACD,CF平分∠ACG,
∴
∵∠ACG+∠ACD=180°,
∴∠ACF+∠ACB=90°,
∴CB⊥CF,故①正确,
∵CD∥AB,∠BAC=50°,
∴∠ACG=50°,
∴∠ACF=∠4=25°,
∴∠ACB=90°-25°=65°,
∴∠BCD=65°,
∵CD∥AB,
∴∠2=∠BCD=65°,
∵∠1=∠2,
∴∠1=65°,故②正确;
∵∠BCD=65°,
∴∠ACB=65°,
∵∠1=∠2=65°,
∴∠3=50°,
∴∠ACE=15°,
∴③∠ACE=2∠4错误;
∵∠4=25°,∠3=50°,
∴∠3=2∠4,故④正确,
故选:B.
【点睛】
此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系.
6.C
【分析】
根据立方根的变化特点和给出的数据进行解答即可.
【详解】
解:∵≈1.333,
∴,
故选:C.
【点睛】
本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.
7.A
【分析】
根据平行线性质求出∠ABF,再和∠CBF相减即可得出答案.
【详解】
解:由题意可得:∠A=60°,∠CBF=20°,,
∵,
∴∠A+∠ABF=180°,
∴∠ABF=180°﹣∠A
=180°﹣60°
=120°,
∴∠ABC=∠ABF﹣∠CBF
=120°﹣20°
=100°,
故选:A.
【点睛】
本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键.
8.B
【分析】
观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1
解析:B
【分析】
观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),由100是偶数,A100的横坐标应该是100÷2×3,纵坐标应该是100÷2+1,则可求A100(150,51).
【详解】
解:观察图形可得,奇数点:A1(2,0),A3(5,1),A5(8,2),…,A2n-1(3n-1,n-1),
偶数点:A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),
∵100是偶数,且100=2n,
∴n=50,
∴A100(150,51),
故选:B.
【点睛】
本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.
九、填空题
9.9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
解析:9
【解析】
试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.
考点:非负数的性质.
十、填空题
10.【分析】
如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质
解析:
【分析】
如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,先由直线y=x-1与两坐标轴的交点坐标确定△OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,∠PAQ=90°,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标.
【详解】
解:如图,设点P关于直线y=x-1的对称点是点Q,过点P作PA∥x轴交直线y=x-1于点A,连接AQ,
设直线y=x-1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,﹣1),
∴OB=OC=1,∴∠OBC=45°,∴∠PAB=45°,
∵P、Q关于直线y=x-1对称,∴AP=AQ,∠PAB=∠QAB=45°,∴∠PAQ=90°,∴AQ⊥x轴,
∵P(﹣2,3),且当y=3时,3=x﹣1,解得x=4,∴A(4,3),∴AD=3,PA=6=AQ,∴DQ=3,∴点Q的坐标是(4,﹣3).
故答案为:(4,﹣3).
【点睛】
本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键.
十一、填空题
11.135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°
解析:135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.
【详解】
解:连接BD,
∵∠C+∠CBD+∠CDB=180°,BC⊥CD,
∴∠C=90°,
∴∠CBD+∠CDB=90°.
∵AB∥DE,
∴∠ABD+∠BDE=180°,
∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.
∵∠ABC和∠CDE的平分线交于点F,
∴∠CBF+∠CDF=×270°=135°,
∴∠BFD=360°-90°-135°=135°.
故答案为135.
【点睛】
本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
十二、填空题
12.25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为
解析:25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为:25.
【点睛】
本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
十三、填空题
13.113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定
解析:113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°.
【详解】
解:如图,设∠B′FE=x,
∵纸条沿EF折叠,
∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,
∴∠BFC=∠BFE﹣∠CFE=x﹣21°,
∵纸条沿BF折叠,
∴∠C′FB=∠BFC=x﹣21°,
而∠B′FE+∠BFE+∠C′FE=180°,
∴x+x+x﹣21°=180°,解得x=67°,
∵A′D′∥B′C′,
∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°,
∴∠AEF=113°.
故答案为113°.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.
十四、填空题
14.255
【分析】
根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.
【详解】
解:∵,,,
∴对144只需进行3次操作
解析:255
【分析】
根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.
【详解】
解:∵,,,
∴对144只需进行3次操作后变为1,
∵,,,
∴对255只需进行3次操作后变为1,
从后向前推,找到需要4次操作得到1的最小整数,
∵,, , ,
∴对256只需进行4次操作后变为1,
∴只需进行3次操作后变为1的所有正整数中,最大的是255,
故答案为:3,255.
【点睛】
本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.
十五、填空题
15.(6,2)或(4,2)
【分析】
根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.
【详解】
∵点A(1,2),AC∥x轴,
解析:(6,2)或(4,2)
【分析】
根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解.
【详解】
∵点A(1,2),AC∥x轴,
∴点C的纵坐标为2,
∵AC=5,
∴点C在点A的左边时横坐标为1-5=-4,
此时,点C的坐标为(-4,2),
点C在点A的右边时横坐标为1+5=6,
此时,点C的坐标为(6,2)
综上所述,则点C的坐标是(6,2)或(-4,2).
故答案为(6,2)或(-4,2).
【点睛】
本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.
十六、填空题
16.【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动
解析:
【分析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.
【详解】
解:根据动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,
第2次接着运动到点,第3次接着运动到点,
第4次运动到点,第5次接着运动到点,,
横坐标为运动次数的2倍,经过第2021次运动后,动点的横坐标为4042,
纵坐标为2,0,1,0,每4次一轮,
经过第2021次运动后,,
故动点的纵坐标为2,
经过第2021次运动后,动点的坐标是.
故答案为:.
【点睛】
此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.
十七、解答题
17.(1)-1;(2)-1
【分析】
(1)根据乘方及二次根式的化简即可求解;
(2)根据乘法的分配率计算即可.
【详解】
(1)
(2)
【点睛】
本题考查的是实数的运算,掌握运算法则及乘法的分配率是
解析:(1)-1;(2)-1
【分析】
(1)根据乘方及二次根式的化简即可求解;
(2)根据乘法的分配率计算即可.
【详解】
(1)
(2)
【点睛】
本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.
十八、解答题
18.(1)x=±;(2)x=.
【解析】
【分析】
(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;
(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可
解析:(1)x=±;(2)x=.
【解析】
【分析】
(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得;
(2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得.
【详解】
解:(1)∵25x2-64=0,
∴25x2=64,
则x2=,
∴x=±;
(2)∵x3-3=,
∴x3=,
则x=.
故答案为:(1)x=;(2)x=.
【点睛】
本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义.
十九、解答题
19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB
解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行
【分析】
求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.
【详解】
解:DE∥BC,理由如下:
∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),
∴∠2=∠4(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行),
∴∠3=∠ADE(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
【点睛】
此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键.
二十、解答题
20.(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;
(2)利用割补法,得到即可求解.
【详
解析:(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;
(2)利用割补法,得到即可求解.
【详解】
解:(1)将段MN平移得到线段AB,其中点M的对应点为A,点N的对称点为B,
①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;
∵N(3,-2),
∴将N(3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)
∴②点B的坐标为(6,3);
(2)如图,过点B作BE⊥x轴于点E,过点A作AD⊥y轴交EB的延长线于点D,则四边形AOED是矩形,
∵A (0,4),B (6, 3), C(4,0)
∴E (6,0), D (6,4)
∴ AO= 4, CO= 4, EO=6,
∴CE=EO-CO=6-4=2, BE=3, DE= 4, AD=6, BD=DE-BE=4-3=1,
∴
【点睛】
本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键.
二十一、解答题
21.(1)2,;(2).
【分析】
(1)利用求解;
(2)由于,则,,然后计算.
【详解】
解:(1)的整数部分是2,小数部分是;
(2),
而整数部分是,小数部分是,
,,
.
【点睛】
本题考查了
解析:(1)2,;(2).
【分析】
(1)利用求解;
(2)由于,则,,然后计算.
【详解】
解:(1)的整数部分是2,小数部分是;
(2),
而整数部分是,小数部分是,
,,
.
【点睛】
本题考查了估算无理数的大小,熟悉相关性质是解题得关键.
二十二、解答题
22.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,故边长为
设长方形宽为,则长为
长方形面积
∴,
解得(负值舍去)
长为
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二十三、解答题
23.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解
解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°
【分析】
(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;
(2)同(1)中方法求解即可;
(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.
【详解】
解:(1)当n=20时,∠ABC=40°,
过E作EF∥AB,则EF∥CD,
∴∠BEF=∠ABE,∠DEF=∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=60°;
(2)同(1)可知:
∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;
当点B在点A右侧时,
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;
如图所示,过点E作EF∥AB,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,
∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,
∵AB∥CD∥EF,
∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF-∠DEF=n°-40°;
综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.
【点睛】
此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.
二十四、解答题
24.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=s.
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,
∴∠KRM=90°-(180°-60°-4t)=4t-30°,
∴5t+4t-30°=180°,
∴t=s.
综上所述,满足条件的t的值为s或s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
二十五、解答题
25.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′
解析:(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵,,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;
(2)①,理由如下
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
②,理由如下:
∵是的一个外角
∴.
∵是的一个外角
∴
又∵
∴
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
展开阅读全文