1、人教中学七年级下册数学期末试题及答案一、选择题1的算术平方根为()ABCD2下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3在平面直角坐标系中,点向下平移4个单位后的坐标是,则点在( )A第一象限B第二象限C第三象限D第四象限4下列四个命题是真命题的是( )A两条直线被第三条直线所截,同位角相等B互补的两个角一定是邻补角C在同一平面内,垂直于同一条直线的两条直线互相平行D相等的角是对顶角5如图,点在的延长线上,能证明是( )ABCD6有个数值转换器,原理如图所示,当输入为27时,输出的值是( )A3BCD327如图,ABCD,直线EF分
2、别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,一个机器人从点出发,向正西方向走到达点;再向正北方向走到达点,再向正东方向走到达点,再向正南方向走到达点,再向正西方向走到达点,按如此规律走下去,当机器人走到点时,点的坐标为( )ABCD九、填空题9_十、填空题10点A(2,4)关于x轴对称的点的坐标是_十一、填空题11如图,在ABC中,A=50,C=72,BD是ABC的一条角平分线,求ADB=_度十二、填空题12如图,己知ABCDOE平分AOC,OEOF,C50,则AOF的度数为_十三、填空题13如图,在长方形纸片ABCD中,点E、F分别在
3、AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果=40,那么EFB的度数是_度十四、填空题14定义一种新运算“”规则如下:对于两个有理数,若,则_十五、填空题15已知点A(0,0),|AB|=5,点B和点A在同一坐标轴上,那么点B的坐标是_十六、填空题16如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,1),P5(2,1),P6(2,0),则P2020的坐标是_十七、解答题17(1)已知,求x的值;(2)计算:.十八、解答题18求下列各式中x的值(1)4x2250;(2)
4、(2x1)364十九、解答题19如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由证明:于点,于点(已知),(_),(_),(_),(已知)(_),_(_)_(等量代换)二十、解答题20在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(2,1),(1,1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形ABC,请在图中画出平移后的三角形ABC,并分别写出点A,B,C的坐标二十一、解答题21(1)
5、如果是的整数部分,是的小数部分,求的平方根(2)当为何值时,关于的方程的解与方程的解互为相反数二十二、解答题22如图,用两个面积为的小正方形纸片剪拼成一个大的正方形(1)大正方形的边长是_;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由二十三、解答题23如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所
6、在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由二十四、解答题24如图,已知AMBN,A64点P是射线AM上一动点(与点A不重合),BC、BD分别平分ABP和PBN,分别交射线AM于点C,D(1)ABN的度数是 ;AMBN,ACB ;(2)求CBD的度数;(3)当点P运动时,APB与ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使ACBABD时,ABC的度数是 二十五、解答题25如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1
7、的图形称之为“8字形”如图2,CAB和BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N试解答下列问题:(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;(2)在图2中,若B=96,C=100,求P的度数;(3)在图2中,若设C=,B=,CAP=CAB,CDP=CDB,试问P与C、B之间存在着怎样的数量关系(用、表示P),并说明理由;(4)如图3,则A+B+C+D+E+F的度数为 【参考答案】一、选择题1C解析:C【分析】根据算术平方根的定义求解.【详解】解:因为,所以的算术平方根为.故选C.【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的
8、定义.2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且
9、移动的距离相等3B【分析】根据向下平移,纵坐标减,求出点的坐标,再根据各象限内点的特征解答【详解】解:设点P纵坐标为y,点向下平移4个单位后的坐标是,点的坐标为,点在第二象限故选:B【点睛】本题考查了坐标与图形的变化平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求出点的坐标是解题的关键4C【分析】根据平行线的性质、邻补角和对顶角的概念以及平行线的判定定理判断即可【详解】解:A、两条平行的直线被第三条直线所截,同位角相等,原命题错误,是假命题,不符合题意;B、互补的两个角不一定是邻补角,原命题错误,是假命题,不符合题意;C、在同一平面内,垂直于同一条直线的两条直线互相
10、平行,原命题正确,是真命题,符合题意;D、相等的角不一定是对顶角,原命题错误,是假命题,不符合题意;故选:C【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是要熟悉课本中的性质定理5D【分析】由题意根据平行线的判定定理对四个选项进行逐一分析即可【详解】解:A. ,能证ADBC,故此选项错误;B. ,不能证明,故此选项错误;C. ,不能证明,故此选项错误;D. ,能证明,故此选项正确.故选:D.【点睛】本题考查的是平行线的判定定理,解答此类题目的关键是正确区分两条直线被第三条直线所截形成的同位角、内错角及同旁内角6B【分析】利用立方根的定义,将x的值
11、代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值【详解】根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得,为无理数.符合题意,即输出的y值为.故答案选:B.【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35
12、故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8A【分析】先求出A1,A2,A3,A8,发现规律,根据规律求出A20的坐标即可【详解】解:一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上,A1(-2,0)从点A2解析:A【分析】先求出A1,A2,A3,A8,发现规律,根据规律求出A20的坐标即可【详解】解:一个机器人从点出发,向正西方向走到达点,点A1在x轴的负半轴上,A1(-2,0)从点A2开始, 由点再向正北方向走到达点,A2(-2,4),由点再向正东方向走到达点,A3(6-2,4)即(4,4),由点再向正
13、南方向走到达点,A4(4,4-8)即(4,-4),由点A4再向正西方向走到达点,A5(4-10,-4)即(-6,-4),由点A5再向正北方向走到达点A6,A6(-6,12-4)即(-6,8),由点A6再向再向正东方向走到达点A7,A7(14-6,8)即(8,8),由点A7再向正南方向走到达点,A8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限且横坐标与下标相同,因为,所以在第四象限,坐标为故选择A【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键九、填空
14、题913【分析】根据求解即可【详解】解:,故答案为:13【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键解析:13【分析】根据求解即可【详解】解:,故答案为:13【点睛】题目主要考查算术平方根的计算,熟记常用数的平方及算数平方根的计算法则是解题关键十、填空题10(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛解析:(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关
15、于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律十一、填空题11101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=18050解析:101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=1805072=58,BD是ABC的一条角平分线,ABD=29,ADB=1805029=101.故答案为:101.【点睛】此题考查三角形内
16、角和定理,解题关键在于掌握其定理.十二、填空题12115【分析】要求AOF的度数,结合已知条件只需要求出AOE的度数,根据角平分线的定义可以得到AOE=AOC,再利用平行线的性质得到C=AOC即可求解.【详解】解:ABCD解析:115【分析】要求AOF的度数,结合已知条件只需要求出AOE的度数,根据角平分线的定义可以得到AOE=AOC,再利用平行线的性质得到C=AOC即可求解.【详解】解:ABCD,C=50,C=AOC=50,OE平分AOC,25,OEOF,EOF=90,AOF=AOE+EOF=115,故答案为:115.【点睛】本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键
17、在于能够熟练掌握相关知识进行求解.十三、填空题1370【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140解析:70【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140,DEF70,四边形ABCD是长方形,ADBC,EFBDEF70故答案为:70【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出DEFD1EF解答十四、填空题14【分析】根据给定新运算的运算法则可以得到关于
18、x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得解析:【分析】根据给定新运算的运算法则可以得到关于x的方程,解方程即可得到解答【详解】解:由题意得:(5x-x)(2)=1,-2(5x-x)-(-2)=-1,-8x+2=-1,解之得:,故答案为【点睛】本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 十五、填空题15(5,0)或(5,0)或(0,5)或(0,5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相
19、等的点有两个,可得答案【详解】解解析:(5,0)或(5,0)或(0,5)或(0,5)【分析】根据点A(0,0)及点B和点A在同一坐标轴上可知点B在x轴上或在y轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案【详解】解:点A(0,0),点B和点A在同一坐标轴上,点B在x轴上或在y轴上,|AB|=5,当点B在x轴上时,点B的坐标为(5,0)或(5,0),当点B在y轴上时,点B的坐标为(0,5)或(0,5);故答案为:(5,0)或(5,0)或(0,5)或(0,5)【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏十六、填空题16(673,-1)【分析】
20、先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而解析:(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6336(2336,0),可得P2016(672,0),进而得到P2020(673,-1)【详解】解:由图可得,P6(2,0),P12(4,0),P6n(2n,0),P6n+4(2n+1,-1),20166=336,P6336(2336,0),即P2016(672,0),P2020(673,-1)
21、故答案为:(673,-1)【点睛】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0)十七、解答题17(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【解析:(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.十八、解答题18(1)x;(2)x【
22、分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解【详解】解:(1)4x2250,4x225,x2,x;(2)(2x1)364解析:(1)x;(2)x【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解【详解】解:(1)4x2250,4x225,x2,x;(2)(2x1)364,2x14,2x3,x【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键十九、解答题19垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根据垂直的定义得到ADC=EGC=90,根据平行线的判定得
23、到ADE解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【分析】根据垂直的定义得到ADC=EGC=90,根据平行线的判定得到ADEG,由平行线的性质得到1=2,等量代换得到E=2,由平行线的性质得到E=3,等量代换即可得到结论【详解】证明:ADBC于点D,EGBC于点G(已知), ADC=EGC=90(垂直的定义),ADEG(同位角相等,两直线平行),1=2(两直线平行,内错角相等),E=1(已知),E=2(等量代换),ADEG,E=3(两直线平行,同位角相等),2=3(等量代换), 故答案为:垂直的定义;同位角相等,两直线平行;两
24、直线平行,同位角相等;等量代换;E;两直线平行,同位角相等;2;3【点睛】本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键二十、解答题20(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(2)分别作出A,B,C即可解决问题【详解】解:(1)平面直角坐标
25、系如图所示:B(0,1)(2)ABC如图所示A(2,1),B(4,3),C(5,1)【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)3;(2)m=-4【分析】(1)估算,得到的范围,从而确定x、y的值,再代入计算即可(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可【详解析:(1)3;(2)m=-4【分析】(1)估算,得到的范围,从而确定x、y的值,再代入计算即可(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可【详解】解:(1),x=6,
26、y=,=9,的的平方根为3;(2),解得:x=-9,的解为x=9,代入,得,解得:m=-4【点睛】本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解二十二、解答题22(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小
27、再判断即可【详解】解:(1)两个正方形面积之和为:28=16(cm2),拼成的大正方形的面积=16(cm2),大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2xx=14,解得:,2x=24,不存在长宽之比为且面积为的长方形纸片【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键二十三、解答题23(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1
28、)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+
29、60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键二十四、解答题24(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,
30、内错角相等可直接写出;(2)由角平分线的定义可以证明CBDABN,即可求出结果;(3)不变,APB:ADB2:1,证APBPBN,PBN2DBN,即可推出结论;(4)可先证明ABCDBN,由(1)ABN116,可推出CBD58,所以ABC+DBN58,则可求出ABC的度数【详解】解:(1)AM/BN,A64,ABN180A116,故答案为:116;AM/BN,ACBCBN,故答案为:CBN;(2)AM/BN,ABN+A180,ABN18064116,ABP+PBN116,BC平分ABP,BD平分PBN,ABP2CBP,PBN2DBP,2CBP+2DBP116,CBDCBP+DBP58;(3)不
31、变,APB:ADB2:1,AM/BN,APBPBN,ADBDBN,BD平分PBN,PBN2DBN,APB:ADB2:1;(4)AM/BN,ACBCBN,当ACBABD时,则有CBNABD,ABC+CBDCBD+DBNABCDBN,由(1)ABN116,CBD58,ABC+DBN58,ABC29,故答案为:29【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等二十五、解答题25(1)3;(2)98;(3)P=(+2),理由见解析;(4)360.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的
32、定义得到CAP=解析:(1)3;(2)98;(3)P=(+2),理由见解析;(4)360.【分析】(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;(2)根据角平分线的定义得到CAP=BAP,BDP=CDP,再根据三角形内角和定理得到CAP+C=CDP+P,BAP+P=BDP+B,两等式相减得到CP=PB,即P=(C+B),然后把C=100,B=96代入计算即可;(3)与(2)的证明方法一样得到P=(2C+B)(4)根据三角形内角与外角的关系可得B+A=1,C+D=2,再根据四边形内角和为360可得答案【详解】解:(1)在图2中有3个以线段AC为边的“8字形”,故答案为3;(2)CAB和BDC的平分线AP和DP相交于点P,CAP=BAP,BDP=CDP,CAP+C=CDP+P,BAP+P=BDP+B,CP=PB,即P=(C+B),C=100,B=96P=(100+96)=98;(3)P=(+2);理由:CAP=CAB,CDP=CDB,BAP=BAC,BDP=BDC,CAP+C=CDP+P,BAP+P=BDP+B,CP=BDCBAC,PB=BDCBAC,2(CP)=PB,P=(B+2C),C=,B=,P=(+2);(4)B+A=1,C+D=2,A+B+C+D=1+2,1+2+F+E=360,A+B+C+D+E+F=360故答案为360