1、人教七年级下册数学期末试题(含答案)一、选择题1如图,直线EF与直线AB,CD相交图中所示的各个角中,能看做1的内错角的是( )A2B3C4D52四根火柴棒摆成如图所示的象形“口”字,平移此象形字火柴棒后,变成的象形文字正确的是()ABCD3如图,小手盖住的点的坐标可能为( )ABCD4下列命题中假命题有( )两条直线被第三条直线所截,同位角相等如果两条直线都与第三条直线平行,那么这两条直线也互相平行点到直线的垂线段叫做点到直线的距离过一点有且只有一条直线与已知直线平行若两条直线都与第三条直线垂直,则这两条直线互相平行A5个B4个C3个D2个5如图,已知直线、被直线所截,E是直线右边任意一点(
2、点E不在直线,上),设,下列各式:,的度数可能是( )ABCD6下列计算正确的是( )ABCD7如图,已知直线,的平分线交于点F,则等于( )ABCD8如图,一个蒲公英种子从平面直角坐标系的原点出发,向正东走米到达点,再向正北方向走米到达点,再向正西方向走米到达点,再向正南方向走米到达点,再向正东方向走米到达点,以此规律走下去,当蒲公英种子到达点时,它在坐标系中坐标为( )ABCD九、填空题94的算术平方根是_十、填空题10点A(2,4)关于x轴对称的点的坐标是_十一、填空题11如图已知点为两条相互平行的直线之间一动点,和的角平分线相交于,若,则的度数为_十二、填空题12如图,把一张长方形纸片
3、沿折叠后,、分别落在,的位置上,与交于点,若,则_十三、填空题13如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=30,则EFC的度数为_十四、填空题14若,是从0,1,2,这三个数中取值的一列数,则在,中,取值为2的个数为_十五、填空题15已知点的坐标(3-a,3a-1),且点到两坐标轴的距离相等,则点的坐标是_十六、填空题16如图,正方形ABCD的各边分别平行于x轴或y轴,且CD边的中点坐标为(2,0),AD边的中点坐标为(0,2)点M,N分别从点(2,0)同时出发,沿正方形ABCD的边作环绕运动点M按逆时针方向以1个单位/秒的速度匀速运动,点N按顺
4、时针方向以3个单位/秒的速度匀速运动,则M,N两点出发后的第2021次相遇地点的坐标是_十七、解答题17(1)计算:(2)计算: (3)计算:(4)计算:十八、解答题18求下列各式中x的值(1)81x2 =16 (2)十九、解答题19已知,如图所示,BCE,AFE是直线,AB/CD,1=2,3=4求证:AD/BE 证明:AB/CD(已知)4= ( )3=4(已知)3= ( )1=2(已知)1+CAF=2+CAF( )即: = 3= AD/BE( )二十、解答题20如图,三角形的顶点都在格点上,将三角形向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:
5、_,_,_;(2)画出平移后三角形;(3)求三角形的面积二十一、解答题21已知:的立方根是,的算术平方根3,是的整数部分(1)求的值;(2)求的平方根二十二、解答题22某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二十三、解答题23如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FB
6、P70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)二十四、解答题24(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图
7、2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t二十五、解答题25在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中
8、有两个角相等若存在,并求x的值;若不存在,请说明理由【参考答案】一、选择题1B解析:B【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角根据内错角的边构成“Z”形判断即可【详解】解:由图可知:能看作1的内错角的是3,故选:B【点睛】本题主要考查同位角、内错角、同旁内角的定义,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形2C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察
9、四个选项可知,只有解析:C【分析】根据火柴头的方向、平移的定义即可得【详解】解:此象形字火柴棒中,有两根火柴头朝向左,一根火柴头朝向上,一根火柴头朝向下,因为平移不改变火柴头的朝向,所以观察四个选项可知,只有选项C符合,故选:C【点睛】本题考查了平移,掌握理解平移的概念是解题关键3C【分析】根据各象限内点的坐标特征判断即可【详解】由图可知,小手盖住的点在第四象限,点的横坐标为正数,纵坐标为负数,(2,3)符合其余都不符合故选:C【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键4B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可【详解】解:两条直线被第三条
10、直线所截,同位角相等,错误,缺少平行的条件;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内 故选B【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义5A【分析】根据点E有3种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可【详解】解:(1)如图,由ABCD,可得AOC=DCE1=,AOC=BAE1+AE1C,
11、AE1C=-(2)如图,过E2作AB平行线,则由ABCD,可得1=BAE2=,2=DCE2=,AE2C=+(3)当点E在CD的下方时,同理可得,AEC=-综上所述,AEC的度数可能为-,+,-即+,-,-,都成立故选A【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等6D【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可【详解】解:A、,故本选项不合题意;B、,故本选项不合题意;C、,故本选项不合题意;D、,故本选项符合题意;故选:D【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键7B【分析】根
12、据平行线的性质推出,然后结合角平分线的定义求解即可得出,从而得出结论【详解】解:,的平分线交于点F,故选:B【点睛】本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键8B【分析】由题意可知:OA13;A1A232;A2A333;可得规律:An1An3n,根据规律可得到A9A1031030,进而求得A10的横纵坐标【详解】解:根据题意可解析:B【分析】由题意可知:OA13;A1A232;A2A333;可得规律:An1An3n,根据规律可得到A9A1031030,进而求得A10的横纵坐标【详解】解:根据题意可知:OA13,A1A26,A2A39,A3A412,A4A51
13、5,A5A618,A9A1030,A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(6,6),A4点坐标为(6,6),A5点坐标为(9,6),A6点坐标为(9,12),以此类推,A9点坐标为(15,12),所以A10点横坐标为15,纵坐标为12+3018,A10点坐标为(15,18),故选:B【点睛】本题主要考查了坐标确定位置的运用,解题的关键是发现规律,利用规律解决问题,解题时注意:各象限内点P(a,b)的坐标特征为:第一象限:a0,b0;第二象限:a0,b0;第三象限:a0,b0;第四象限:a0,b0九、填空题9【详解】试题分析:,4算术平方根为2故答案为2考点:算术平方根解析
14、:【详解】试题分析:,4算术平方根为2故答案为2考点:算术平方根十、填空题10(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛解析:(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律十一、填空题11120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得
15、到,最后根据即可求解【详解】解:和的角平分线相交于,又,设,在四边形中,解析:120【分析】由角平分线的定义可得,又由,得,;设,则;再根据四边形内角和定理得到,最后根据即可求解【详解】解:和的角平分线相交于,又,设,在四边形中,故答案为:【点睛】本题考查了平行线的判定和性质,正确的识别图形是解题的关键十二、填空题1268【分析】先根据平行线的性质求得DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:AD/BC,DEF=EFG=56,由折叠可得,GEF解析:68【分析】先根据平行线的性质求得DEF的度数,再根据折叠求得DEG的度数,最后计算AEG的大小【详解】解:AD/
16、BC,DEF=EFG=56,由折叠可得,GEF=DEF=56,DEG=112,AEG=180-112=68故答案为:68【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等十三、填空题13120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而解析:120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而AEB的度数可在RtABE中求得,由
17、此可求出BEF的度数,即可得解【详解】解:RtABE中,ABE=30,AEB=60;由折叠的性质知:BEF=DEF;而BED=180-AEB=120,BEF=60;由折叠的性质知:EBC=D=BCF=C=90,BECF,EFC=180-BEF=120故答案为:120【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题14508【分析】通过,是从0,1,2,这三个数中取值的一列数,从而得到1的个数,再由得到2的个数【详解】解:,又,是从0,1,2,这三个数中取值的一列数,中为解析:508
18、【分析】通过,是从0,1,2,这三个数中取值的一列数,从而得到1的个数,再由得到2的个数【详解】解:,又,是从0,1,2,这三个数中取值的一列数,中为1的个数是20191510509,2的个数为(1525509)2508个故答案为:508【点睛】此题考查完全平方的性质,找出,中为1的个数是解决问题的关键十五、填空题15(2,2)或(4,-4)【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然后去绝对值求出x的值,再写出点P 的坐标【详解】解:点P到两坐标轴的距离相等=解析:(2,2)或(4,-4)【分析】点P到x轴的距离表示为,点P到y轴的距离表示为,根据题意得到=,然
19、后去绝对值求出x的值,再写出点P 的坐标【详解】解:点P到两坐标轴的距离相等=3a-1=3-a或3a-1=-(3-a)解得a=1或a=-1当a=1时,3-a=2,3a-1=2;当a=-1时,3-a=4,3a-1=-4点P的坐标为(2,2)或(4,-4)故答案为(2,2)或(4,-4)【点睛】本题考查了坐标与图形性质:利用点的坐标特征求出线段的长和判断线段与坐标轴的位置关系点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面;到x轴的距离与纵坐标有关;距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号十六、填空题16(0,2)【分析】利用行程问题中的相遇问题,由于正方形的
20、边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答【详解】解:由已知,正方形周长为16,M、N速度分别为1单解析:(0,2)【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答【详解】解:由已知,正方形周长为16,M、N速度分别为1单位/秒,3单位/秒,则两个物体每次相遇时间间隔为4秒,则两个物体相遇点依次为(0,2)、(2,0)、(0,2)、(2,0)202145051,第2021次两个物体相遇位置为(0,2),故答案为:(0,2)【点睛】本题考查了平面直角坐标系中点的规律,找到规律是解题的关键十七、解答题17(
21、1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可【详解】解:(1)(2)(3)(4)【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识十八、解答题18(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程
22、利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:解析:(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法十九、解答题19FAB;两直线平行,同位角相等;FAB;等量代换;等式的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出4BAF3,求出DACBAF,推出3解析:FAB;两直线平行,同位角相等;FAB;等量代换;等式
23、的性质;FAB;CAD; CAD;内错角相等,两直线平行【分析】根据平行线的性质求出4BAF3,求出DACBAF,推出3BAF,根据平行线的判定推出即可【详解】证明:AB/CD(已知) 4FAB(两直线平行,同位角相等)34(已知)3FAB(等量代换)12(已知)1CAF2CAF(等式的性质)即:FABCAD3CADAD/BE(内错角相等,两直线平行)故填:BAF,两直线平行,同位角相等,BAF,等量代换,DAC,DAC,内错角相等,两直线平行【点睛】本题考查了平行线的性质和判定的应用,注意:平行线的性质是:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,反之亦然二十
24、、解答题20(1),;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将ABC补全为长方形解析:(1),;(2)见解析;(3)【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将ABC补全为长方形,然后利用作差法求解即可【详解】解:(1)平移后的三个顶点坐标分别为:,;(2)画出平移后三角形;(3)【点睛】本题考查了平移作图的知识,解答本题的关键是根据平移的特点准确作出图形,第三问求解不规则图形面积的时
25、候可以先补全,再减去二十一、解答题21(1);(2)其平方根为【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根【详解】解:(1)由题得 又,解析:(1);(2)其平方根为【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根【详解】解:(1)由题得 又, (2)当时, 其平方根为【点睛】本题考查了立方根,平方根,无理数的估算正确把握相关定义是解题的关键二十二、解答题22(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根
26、,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a
27、+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二十三、解答题23(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=解析:(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=F
28、BP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=DAP(两直线平行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中
29、证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EBP, = (180-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线二十四、解答题24(1)平行,理由见解析;(2)65;(3
30、)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)分AB与CD在EF的两侧,分别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出DCF与BAC,然后根据两直
31、线平行,同位角相等列式计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【详解】解:(1)平行理由如下:如图1,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与水平线的夹角为:25+40=65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BAF=105,DCF=65,A
32、CD=180-65-3t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD旋转到与AB都在EF的右侧时,BAF=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180-65+180)=3t-295,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此情况不存在综上所述,t为5秒
33、或95秒时,CD与AB平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论二十五、解答题25(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角
34、形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,180BAC180DFE90,即:BCEFDE90,CFDE,ACDE,CAFE,CAFEB故与B相等的角有CAF和E;BAC90,AEBC,BAFCAF90, CFA180(CAFC)90BAFCAFCAFC90BAFC又ACDE,CCDE,故与C相等的角有CDE、BAF;(2)又,C70,B20;BADx, B20则,由翻折可知:, , ,当FDEDFE时,, 解得:;当FDEE时,解得:(因为0x45,故舍去);当DFEE时,解得:(因为0x45,故舍去);综上所述,存在这样的x的值,使得DEF中有两个角相等且【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识