1、人教七年级下册数学期末试题(及解析)一、选择题1的平方根是()A2BCD2下列生活现象中,不是平移现象的是( )A人站在运行着的电梯上B推拉窗左右推动C小明在荡秋千D小明躺在直线行驶的火车上睡觉3在平面直角坐标系中,点位于( )A第一象限B第二象限C第三象限D第四象限4下列四个命题其中正确的个数是( )对顶角相等;在同一平面内,若,与相交,则与也相交;邻补角的平分线互相垂直;在同一平面内,垂直于同一条直线的两条直线互相垂直A1个B2个C3个D4个5如图,平分,平分,则下列结论:,其中正确的是( )ABCD6若,则x和y的关系是()Axy0Bx和y互为相反数Cx和y相等D不能确定7如图,将一张长
2、方形纸片沿折叠使顶点,分别落在点,处,交于点,若,则( )ABCD8在直角坐标系中,一个质点从出发沿图中路线依次经过,按此规律一直运动下去,则( )A1009B1010C1011D1012九、填空题9若x,则x的值为_十、填空题10若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_,b=_十一、填空题11在ABC中,AD为高线,AE为角平分线,当B=40,ACD=60,EAD的度数为_.十二、填空题12如图,把一块三角板的直角顶点放在一直尺的一边上,若150,则2的度数为_十三、填空题13将长方形纸带沿EF折叠(如图1)交BF于点G,
3、再将四边形EDCF沿BF折叠,得到四边形,EF与交于点O(如图2),最后将四边形沿直线AE折叠(如图3),使得A、E、Q、H四点在同一条直线上,且恰好落在BF上若在折叠的过程中,且,则_十四、填空题14对于三个数a,b,c,用Ma,b,c表示这三个数的平均数,用mina,b,c表示这三个数中最小的数例如:M1,2,3,min1,2,31,如果M3,2x1,4x1min2,x3,5x,那么x_.十五、填空题15在平面直角坐标系中,点A(1,4),C(1,2),E(a,a),D(4b,2b),其中a+b2,若DEBC,ACB90,则点B的坐标是_十六、填空题16如图,一只跳蚤在第一象限及x轴、y轴
4、上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)跳到点(1,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1) (1,1) (1,0),每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是_十七、解答题17计算:(1) (2)(3) (4)十八、解答题18求下列各式中的的值:(1);(2)十九、解答题19填空并完成以下过程:已知:点P在直线CD上,BAP+APD180,12请你说明:EF解:BAP APD180,(_)AB_,(_)BAP_,(_)又12,(已知)3_1,4_2,3_,(等式的性质)AEPF,(_)EF(_)二十、解答题20已知点A(2,3),B(4,
5、3),C(1,3)(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标二十一、解答题21已知的平方根是的立方根是是的整数部分,求的算术平方根二十二、解答题22小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、
6、解答题23已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数二十四、解答题24如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为
7、钝角,点在直线、之间,且满足,(其中为常数且),直接写出与的数量关系二十五、解答题25如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动(1)若BAO和ABO的平分线相交于点Q,在点A,B的运动过程中,AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由(2)若AP是BAO的邻补角的平分线,BP是ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,P和C的大小是否会发生变化?若不发生变化,请求出P和C的度数;若发生变化,请说明理由【参考答案】一、选择题1B解析:
8、B【分析】先计算出,再求出的平方根即可【详解】解:,的平方根是,故选:B【点睛】本题考查了平方根的概念和求法,掌握平方根的定义是解题的关键2C【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可【详解】解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发解析:C【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可【详解】解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动故选:C【点睛】本题考查了图形的平移,解题的关键是掌握图形
9、的平移只改变图形的位置,而不改变图形的形状和大小3D【分析】根据各象限内点的坐标特征解答【详解】解:点(3,-2)所在象限是第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答【详解】对顶角相等,正确;在同一平面内,若,与相交,则与也相交,正确;邻补角之和为180,所以它们平分线的夹角为,即邻补角的平分线互相垂直,正确;在同一平面内,垂直于同一条直线的两条直线互相垂直,正确故选:D【
10、点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键5B【分析】根据角平分线的性质可得,再利用平角定义可得BCF=90,进而可得正确;首先计算出ACB的度数,再利用平行线的性质可得2的度数,从而可得1的度数;利用三角形内角和计算出3的度数,然后计算出ACE的度数,可分析出错误;根据3和4的度数可得正确【详解】解:如图,BC平分ACD,CF平分ACG, ACG+ACD=180,ACF+ACB=90,CBCF,故正确,CDAB,BAC=50,ACG=50,ACF=4=25,ACB=90-25=65,BCD=65,CDAB,2=BCD=65,1=2,1=
11、65,故正确;BCD=65,ACB=65,1=2=65,3=50,ACE=15,ACE=24错误;4=25,3=50,3=24,故正确,故选:B【点睛】此题主要考查了平行线的性质,以及角平分线的性质,关键是理清图中角之间的和差关系6B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可详解:,x=-y,即x、y互为相反数,故选B点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y7B【分析】根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解【详解】解:在矩形纸片中,折叠,故选:B【点睛】本题考查了平行线的性质以及折叠的性质,根据两直
12、线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要8B【分析】根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,由此可知当n为偶数时;,可得 ,可以得到,由此求解即可解析:B【分析】根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,由此可知当n为偶数时;,可得 ,可以得到,由此求解即可【详解】解:由题意可知A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),由此可知当n为偶数时 ,可得 ,可以得到,故选B【点睛】本题主要考
13、查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解九、填空题90或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.【详解】02=0,12=1,0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a的算术平方根)求解.【详解】02=0,12=1,0的算术平方根为0,1的算术平方根为1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x的平方等于a,即x=a,则这个数x叫做a
14、的算术平方根)求解.十、填空题10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题1110或40;【分析】首先根据三角形的
15、内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,BAE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-BAE=50-40=10当高AD在ABC的外部时同法可得EAD=
16、10+30=40故答案为10或40【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数十二、填空题1240【分析】利用平行线的性质求出3即可解决问题【详解】解:直尺的两边互相平行,1350,2+390,290340,故答案为:40解析:40【分析】利用平行线的性质求出3即可解决问题【详解】解:直尺的两边互相平行,1350,2+390,290340,故答案为:40【点睛】本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题十三、填空题1332【分析】连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再
17、根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,A、E、Q、H在同一直线上解析:32【分析】连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,A、E、Q、H在同一直线上,=90=180-90-26=64由折叠的性质可知:=32故答案为:32.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+
18、1解析:或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1,M3,2x1,4x1min2,x3,5x,有如下三种情况:2x+1=2,x=,此时min2,x3,5x= min2,=2,成立;2x+1=-x+3,x=,此时min2,x3,5x= min2,=2,不成立;2x+1=5x,x=,此时min2,x3,5x= min2,=,成立,x=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进
19、行求解十五、填空题15或【分析】根据,求得的坐标,进而求得的长,根据DEBC,ACB90,分类讨论即可确定的坐标【详解】,的纵坐标相等,则到轴的距离相等,即轴则 DEBC, A(1,4解析:或【分析】根据,求得的坐标,进而求得的长,根据DEBC,ACB90,分类讨论即可确定的坐标【详解】,的纵坐标相等,则到轴的距离相等,即轴则 DEBC, A(1,4),C(1,2),的横坐标相等,则到轴的距离相等,即轴则轴,当在的左侧时,当在的右侧时,的坐标为或故答案为:或【点睛】本题考查了坐标与图形,点的平移,平行线的性质与判定,点到坐标轴的距离,根据题意求得的长是解题的关键十六、填空题16(5,6)【分析
20、】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳动;跳到(2,2)位置用时23=6秒,下一步向左跳动;跳到(3,3)位置用时34=12秒,下一步向下跳动;跳到(4,4)位置用时45=20秒,下一步向左跳动;由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向
21、下跳动;当n为偶数时,下一步向左跳动;第67=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为:(5,6)【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间十七、解答题17(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算
22、即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式【详解】解:(1)=3+2+1=6;(2)=2-3-3=-4;(3)= ;(4)= =故答案为(1)6;(2)-4;(3);(4).【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算十八、解答题18(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),解析:(1);(2)【分析】(1)先
23、将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),;(2),解得:【点睛】此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键十九、解答题19已知;CD;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性
24、质和判定即可解决问题;【详解】解:BAP+APD180(已知),ABCD(同旁内角互补两直线平行),BAPAPC(两直线平行内错角相等),又12,(已知),3BAP1,4APC2,34(等式的性质),AEPF(内错角相等两直线平行),EF(两直线平行内错角相等)【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键二十、解答题20(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(
25、5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)A(-2,3),B(4,3),AB=4-(-2)=6;(3)C(-1,-3),C到x轴的距离为3,到直线AB的距离为6;(4)AB=6,C到直线AB的距离为6,;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求P(0,-3);同理当P在AB
26、的上方还有一个到AB距离是6的点满足要求,即P(0,9);P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.二十一、解答题21【分析】首先根据平方根与立方根的概念可得2a1与a3b1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a2bc,根据算术平方根的求法可得答案【详解】解:根据题意,解析:【分析】首先根据平方根与立方根的概念可得2a1与a3b1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a2bc,根据算术平方根的求法可得答案【详解】解:根据题意,可得2a19, a3b1
27、-8;解得:a5,b-4;又67,可得c6;a2bc3;a2bc的算术平方根为【点睛】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法二十二、解答题22(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cma2
28、=400又a0a=20又要裁出的长方形面积为300cm2若以原正方形纸片的边长为长方形的长,则长方形的宽为:30020=15(cm)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)长方形纸片的长宽之比为3:2设长方形纸片的长为3xcm,则宽为2xcm6x 2=300x 2=50又x0x =长方形纸片的长为又202即:20小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB解析:(1)
29、BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKF
30、N,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEE
31、ND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键二十四、解答题24(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,
32、;【点睛】考核知识点:平行线性质和判定的综合运用熟练运用平行线性质和判定是关键二十五、解答题25(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BA解析:(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BAQ与ABQ的和,最后在ABQ中,根据三角形的内角各定理可求AQB的大小第(2)题求P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解【详解】解:
33、(1)AQB的大小不发生变化,如图1所示,其原因如下:mn,AOB90,在ABO中,AOB+ABO+BAO180,ABO+BAO90,又AQ、BQ分别是BAO和ABO的角平分线,BAQBAC,ABQABO,BAQ+ABQ (ABO+BAO)又在ABQ中,BAQ+ABQ+AQB180,AQB18045135(2)如图2所示:P的大小不发生变化,其原因如下:ABF+ABO180,EAB+BAO180BAQ+ABQ90,ABF+EAB36090270,又AP、BP分别是BAE和ABP的角平分线,PABEAB,PBAABF,PAB+PBA (EAB+ABF)270135,又在PAB中,P+PAB+PBA180,P18013545C的大小不变,其原因如下:AQB135,AQB+BQC180,BQC180135,又FBOOBQ+QBA+ABP+PBF180ABQQBOABO,PBAPBFABF,PBQABQ+PBA90,又PBCPBQ+CBQ180,QBC1809090又QBC+C+BQC180,C180904545【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题