收藏 分销(赏)

2022年人教版中学七7年级下册数学期末质量监测试卷(及解析).doc

上传人:精*** 文档编号:1749754 上传时间:2024-05-08 格式:DOC 页数:26 大小:691.04KB
下载 相关 举报
2022年人教版中学七7年级下册数学期末质量监测试卷(及解析).doc_第1页
第1页 / 共26页
2022年人教版中学七7年级下册数学期末质量监测试卷(及解析).doc_第2页
第2页 / 共26页
2022年人教版中学七7年级下册数学期末质量监测试卷(及解析).doc_第3页
第3页 / 共26页
2022年人教版中学七7年级下册数学期末质量监测试卷(及解析).doc_第4页
第4页 / 共26页
2022年人教版中学七7年级下册数学期末质量监测试卷(及解析).doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、2022年人教版中学七7年级下册数学期末质量监测试卷(及解析)一、选择题1下列图形中,与是同位角的是( )ABCD2下列图形中,哪个可以通过图1平移得到( )ABCD3如果在第三象限,那么点在( )A第一象限B第二象限C第三象限D第四象限4在以下三个命题中,正确的命题有( )a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交a,b,c是三条不同的直线,若ab,bc,则ac若与互补,与互补,则a与互补ABCD5如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( )ABCD6下列各组数中,互为相反数的是( )A与B与C与D与7如图,ABCD,直线

2、EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为()A(2018,1)B(4034+1,1)C(2017,1)D(4034,1)九、填空题9如果,的平方根是,则_十、填空题10已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是_十一、填空题11如图,在ABC中,A=50,C=72,BD是ABC的一条角平分线,求ADB=_度十二、填空题12如图,把一把直尺放在含度角的直角三角板上,量得

3、,则的度数是_十三、填空题13把一张长方形纸条按如图所示折叠后,若,则_;十四、填空题14任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,对144只需进行_次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_十五、填空题15在平面直角坐标系中,已知点P(2,3),PAy轴,PA=3,则点A的坐标为_十六、填空题16如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接着运动到点,第三次接着运动到点,按这样的运动规律,经过次运动后,动点的坐标是_十七、解答题17计算:(1) (

4、2)十八、解答题18求下列各式中x的值(1)81x2 =16 (2)十九、解答题19完成下面的证明与解题如图,ADBC,点E是BA延长线上一点,EDCE(1)求证:BD证明:ADBC,B_(_)EDCE,ABCD(_)D_(_)BD(2)若CE平分BCD,E50,求B的度数二十、解答题20已知在平面直角坐标系中有三点,请回答如下问题:(1)在平面直角坐标系内描出、,连接三边得到;(2)将三点向下平移2个单位长度,再向左平移1个单位,得到;画出,并写出、三点坐标;(3)求出的面积二十一、解答题21如图,数轴的正半轴上有,三点,点,表示数和点到点的距离与点到点的距离相等,设点所表示的数为(1)请你

5、求出数的值(2)若为的相反数,为的绝对值,求的整数部分的立方根二十二、解答题22某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二十三、解答题23如图1,/,点、分别在、上,点在直线、之间,且(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,直线分别交、分别于点、,且,直接写出的值

6、二十四、解答题24如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3的速度沿顺时针方向旋转一周(1)几秒后与重合?(2)如图2,经过秒后,求此时的值(3)若三角板在转动的同时,射线也绕点以每秒6的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由二十五、解答题25已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并

7、证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 【参考答案】一、选择题1B解析:B【分析】两条线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角【详解】解:根据同位角的定义可知B选项中1与2在直线的同侧,并且在第三条直线(截线)的同旁,故是同位角故选:B【点睛】本题主要考查同位角的定义,准确理解同位角的定义,是解本题的关键2A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A考

8、点:平移的性质解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A考点:平移的性质3B【分析】根据第三象限内点的横坐标是负数,纵坐标是负数确定出a、b的正负情况,再求出a+b,ab的正负情况,然后确定出点Q所在的象限,即可得解【详解】解:点P(a,b)在第三象限,a0,b0,a+b0,ab0,点Q(a+b,ab)在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4A【分析】根据

9、直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可【详解】解:a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故错误;a,b,c是三条不同的直线,若ab,bc,则ac,故正确;若与互补,与互补,则a与相等,故错误综上:正确的命题是故选A【点睛】此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键5D【分析】由折叠的性质可知1=BAG,2BDC+2=180,根据BEAG,得到CFB=CAG=21,从而根据平行线的性质得到CDB=21,则2=180-41.【详解】解:由题意得:

10、AGBECD,CFBD,CFB=CAG,CFB+DBF=180,DBF+CDB=180CFB=CDBCAG=CDB由折叠的性质得1=BAG,2BDC+2=180CAG=CDB=1+BAG=22=180-2BDC=180-4故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得【详解】A、,则与不是相反数,此项不符题意;B、与不是相反数,此项不符题意;C、,则与互为相反数,此项符合题意;D、,则与不是相反数,此项不符题意;故选:C【点睛】本题考查了绝对值运算、有理数的乘方

11、运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可【详解】解:圆

12、的半径为1,且圆心到两坐标轴的距离都等于半径,圆心坐标(1,1解析:B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可【详解】解:圆的半径为1,且圆心到两坐标轴的距离都等于半径,圆心坐标(1,1)圆向x轴正方向滚动2017圈,圆沿x轴正方向平移个单位长度圆心沿x轴正方向平移个单位长度平移后圆心坐标故选:B【点睛】本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离九、填空题9-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主

13、要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值解析:-4【分析】根据题意先求出 ,再代入,即可【详解】解:的平方根是, , ,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值十、填空题10【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵

14、坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键十一、填空题11101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=18050解析:101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=1805072=58,BD是ABC的一条角平分线,ABD=29,ADB=1805029=

15、101.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.十二、填空题12【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案【详解】已知可知直尺的两边平行故答案为:114【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三解析:【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案【详解】已知可知直尺的两边平行故答案为:114【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键十三、填空题1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,

16、再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键十四、填空题14255 【分析】根据运算过程得出,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得

17、出答案【详解】解:,对144只需进行3次操作解析:255 【分析】根据运算过程得出,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案【详解】解:,对144只需进行3次操作后变为1,对255只需进行3次操作后变为1,从后向前推,找到需要4次操作得到1的最小整数, , ,对256只需进行4次操作后变为1,只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:3,255【点睛】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力十五、填空题15(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相

18、等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点解析:(-2,6)或(-2,0)【分析】根据平行于y轴的直线上点的横坐标相等,到一点距离相等的点有两个,位于该点的上下,可得答案【详解】解:由点P(-2,3),PAy轴,PA=3,得在P点上方的A点坐标(-2,6),在P点下方的A点坐标(-2,0),故答案为:(-2,6)或(-2,0)【点睛】本题考查了点的坐标,掌握平行于y轴的直线上点的横坐标相等是解题关键,注意到一点距离相等的点有两个,以防遗漏十六、填空题16(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可【详解

19、】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),当n为奇数时,第n次运动到点(,), 当n为偶数时,第n次运动到点(,),所以经过2021次运动后,动点P的坐标是(1010,1011),故答案为:(1010,1011)【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意

20、,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标十七、解答题17(1);(2)5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+解析:(1);(2)5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(

21、2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:解析:(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法十九、解答题19(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)根据平行线的性质及判定填空即可;(2)由EDCE,E50,解析:(1)EAD;两直线平行,同位角相等;内错角

22、相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)根据平行线的性质及判定填空即可;(2)由EDCE,E50,可得ABCD,DCE50,而CE平分BCD,即得BCD100,故B80【详解】(1)证明:ADBC,BEAD(两直线平行,同位角相等),EDCE,ABCD(内错角相等,两直线平行),DEAD(两直线平行,内错角相等),BD;故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)解:EDCE,E50,ABCD,DCE50,B+BCD180,CE平分BCD,BCD2DCE100,B80【点睛】本题考查平行线性质及判定的

23、应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算二十、解答题20(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:(-4,-2)、(4,2)、(0,3);(3)的面积:

24、 【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键二十一、解答题21(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可【详解】解:(1)点分别表示解析:(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可【详解】解:(1)点分别表示1,;(2),的整数部分是8,【点睛】此题考查了估算无理数的大小,正确估算及是解题的关键二十二、解答题22(1)原来正方形场

25、地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a

26、=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二十三、解答题23(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的定义可设BEM解析:(1) ;(2)的值为40;(3)【分析】(1)过点O作OGAB,可得ABOGCD,利用平行线的性质可求解;(2)过点M作MKAB,过点N作NHCD,由角平分线的

27、定义可设BEM=OEM=x,CFN=OFN=y,由BEO+DFO=260可求x-y=40,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值【详解】证明:过点O作OGAB,ABCD,ABOGCD,即 EOF=100,;(2)解:过点M作MKAB,过点N作NHCD,EM平分BEO,FN平分CFO,设x-y=40,MKAB,NHCD,ABCD,ABMKNHCD, =x-y=40,故的值为40;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,ABCD, 即FK在DFO内, ,即解得 经检验,

28、符合题意,故答案为:【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键二十四、解答题24(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3t,则AOC=30+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分MOB,由题意列出方

29、程,解方程即可【详解】解:(1)303=10,10秒后ON与OC重合;(2)MNABBOM=M=30,AON+BOM=90,AON=60,t=603=20经过t秒后,MNAB,t=20秒(3)如图3所示:AON+BOM=90,BOC=BOM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,则AOC=30+6t,OC与OM重合,AOC+BOC=180,可得:(30+6t)+(90-3t)=180,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:AON+BOM=90,BOC=COM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,

30、设AON=3t,AOC=30+6t,BOM+AON=90,BOC=COM=BOM=(90-3t),由题意得:180-(30+6t)=( 90-3t),解得:t=秒,即经过秒OC平分MOB【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键二十五、解答题25(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+A解析:(1)70;F=BED,证明见解析;(2)2F+BED=360;(3)【分析】(1)

31、过F作FG/AB,利用平行线的判定和性质定理得到DFB=DFG+BFG=CDF+ABF,利用角平分线的定义得到ABE+CDE=2ABF+2CDF=2(ABF+CDF),求得ABF+CDF=70,即可求解;分别过E、F作EN/AB,FM/AB,利用平行线的判定和性质得到BED=ABE+CDE,利用角平分线的定义得到BED=2(ABF+CDF),同理得到F=ABF+CDF,即可求解;(2)根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合的结论即可说明BED与BFD之间的数量关系;(3)

32、通过对的计算求得,利用角平分线的定义以及三角形外角的性质求得,即可求得【详解】(1)过F作FG/AB,如图:ABCD,FGAB,CDFG,ABF=BFG,CDF=DFG,DFB=DFG+BFG=CDF+ABF,BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,ABE+CDE=2ABF+2CDF=2(ABF+CDF)=60+80=140,ABF+CDF=70,DFB=ABF+CDF=70,故答案为:70;F=BED, 理由是:分别过E、F作EN/AB,FM/AB,EN/AB,BEN=ABE,DEN=CDE,BED=ABE+CDE,DF、BF分别是CDE的角平分线与ABE的角平分

33、线,ABE=2ABF,CDE=2CDF,即BED=2(ABF+CDF);同理,由FM/AB,可得F=ABF+CDF,F=BED;(3)2F+BED=360如图,过点E作EGAB,则BEG+ABE=180,ABCD,EGAB,CDEG,DEG+CDE=180,BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),BF平分ABE,ABE=2ABF,DF平分CDE,CDE=2CDF,BED=360-2(ABF+CDF),由得:BFD=ABF+CDF,BED=360-2BFD,即2F+BED=360;(3),F=,解得:,如图,CDE 为锐角,DF是CDE的角平分线,CDH=DHB,FDHB,即,故答案为:【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服