资源描述
人教版六年级上册数学应用题附答案
1.六年级三个班学生共同植树,一班植树160棵,二班植树的棵树是一班的,三班植树的棵树是二班的,三班植树多少棵?
2.李红爸爸每月工资约4500元,妈妈每月工资约3500元,每月家庭支出大约是他俩工资总数的。李红家每月大约能结余多少元?
3.一片树林有梨树150棵,桃树的棵数是梨树的,桃树有多少棵?
4.六年级共有学生240人,其中六(1)班人数占,六(2)班人数占,这两个班哪个班的人数多?多多少人?
5.有面粉250千克,大米比面粉多,大米比面粉多多少千克?(只列式,不计算。)
6.水果店运来210筐水果,第一天卖出总数的,第二天卖出余下的。水果店里还剩下多少筐水果?
7.甲乙两辆车从A、B两地同时相向开出,4小时后相遇。乙车是甲车速度的,相遇时甲车比乙车多行80千米,两地相距多少千米?
8.武胜县共有公交车约200辆,其中是纯电动车,纯电动公交车有多少辆?
9.果园里有杏树360棵,苹果树的棵数比杏树多。苹果树有多少棵?
10.奶奶买了60米长的彩带,用总长的做了中国结,用总长的做了蝴蝶结,这条彩带一共用了多少米?
11.三个同学踢毽子,小明踢了96个,小强踢的数量是小明的,小亮踢的数量是小强的,小亮踢了多少个?
12.某连锁商场2020年盈利达640万元,其中上半年盈利是全年盈利的,第四季度盈利是上半年盈利的。该连锁商场2020年第四季度盈利多少万元?
13.鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的。鸡的孵化期是多少天?
14.公园里有桂花树300棵,柳树是桂花树的,榕树是柳树的。榕树有多少棵?
15.只列综合算式或方程,不解答。
一个蔬菜大棚共480平方米,其中一半种各种萝卜,已知红萝卜地的面积占整块萝卜地的。红萝卜地有多少平方米?
16.大毛有120本课外书,二毛的课外书本数是大毛的,小毛的课外书本数是二毛的。小毛有多少本课外书?
17.果园里有420棵果树,梨树占,桃树的棵数是梨树的,桃树有多少棵?
18.一个长方形土地,宽42米,长是宽的2倍,这块地的面积是多平方米?
19.爷爷今年70岁,爸爸的年龄是爷爷的,我的年龄恰巧是爸爸的。我今年多少岁?
20.幼儿园老师准备折1200只纸花,她们第一天完成了任务的,第二天完成了余下任务的,第三天需要折多少只才能完成任务?
21.兄弟两人要从公园门口沿马路向东去博物馆,而他们回家则要从公园门口沿马路向西行.他们商量是先回家取车,再骑到博物馆;还是直接从公园门口走到博物馆.哥哥算了一下:如果从公园到博物馆的距离超过1千米,则回家取车比较省时间;如果公园和博物馆的距离不足1千米,则直接走过去省时间.若骑车与步行的速度比是4:1,那么公园门口到他们家的距离是多少千米?
22.水果店运进一批桂园,第一天售出,第二天售出余下的,还剩36千克没有卖,这批桂园有多少千克?
23.汽车往返甲、乙两地.去的时候平均每小时行50千米,返回的时候平均每小时行60千米,汽车往返两地平均每小时行多少千米?
24.操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,这时女生人数占,后来又来了几名女生?
25.甲乙两仓库共存粮54吨,甲仓用了,乙仓用了后,剩下的两仓一样多,原来两仓各存粮多少吨?
26.快车从甲地到乙地要行10小时,慢车从乙地到甲地要行15小时。两车同时从甲、乙两地出发,相向而行,4小时后两车还相距200km。甲、乙两地相距多少千米?
27.打一份稿件,小红需要8小时,小明需要10小时,两人合作打了4小时,还剩5000个字,这份稿件一共有多少个字?
28.某通信公司有两种不同的通话费计费方式,第一种:每月付20元月租费,然后每分钟收通话费0.18元;第二种:不收月租费,每分钟收通话费0.28元。
①如果每月通话300分钟,哪一种计费方式更便宜?
②每月通话多少分钟,两种计费方式的通话费正好相等?
29.一批零件,甲独做8天完成,乙独做12天完成。现在由两人合作完成这批零件,中途甲因事请假2天,完成这批零件共用了多少天?
30.有甲、乙两只水桶,把甲桶里的半桶水倒入乙桶,刚好装了乙桶的,再把乙桶装满水后倒出全桶的后还剩12千克,甲桶可装水多少千克?
31.如图,长方形的长AD与宽AB的比为5∶3,E、F为 AB边上的三等分点,某时刻,甲从A点出发沿长方形逆时针运动,与此同时,乙、丙分别从E、F出发沿长方形顺时针运动。甲、乙、丙三人的速度比为4∶3∶5,他们出发后12分钟,三人所在位置的点的连线第一次构成长方形中最大的三角形,那么再过多少分钟,三人所在位置的点的连线第二次构成最大三角形?
32.在直角三角形ABC中,这个三角形的面积是90平方厘米,D是BC的中点,E是AD中一点,AE与ED的比是2∶1,求阴影部分的面积?
33.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?
34.某地区要为疫情重灾区运送90吨防控物资,原计划按3∶2分配给甲、乙两个车队。后来,丙队自愿加入帮助运送。物资运完时,甲队少运了原分配任务的,乙队少运了原分配任务的。
(1)按计划,甲队需运送这批物资的,乙队需运送这批物资的。
(2)完成任务时,丙队帮助( )队运送的物质多一些(填上“甲”或“乙”)。请说明理由。
(3)丙队运送多少吨防控物资?
35.小汽车与货车同时从甲、乙两地相对开出,当货车行了全程的时,小汽车行了全程的少10千米,这时已行的路程与剩下路程的比是3∶5。甲、乙两地相距多少千米?
36.客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有40千米。已知货车和客车的速度比是5∶7,甲、乙两地相距多少千米?
37.苍中七年级学生分三组参加植树,第一组与第二组的人数比是5∶4,第二组与第三组的人数比是3∶2,第一组人数比第二组与第三组人数的总和少20人,七年级参加植树的共有多少人?
38.妈妈买来一些水果糖,小华吃掉一半后又多吃了两粒,第二天也是这样吃了剩下的一半再多吃两粒,第三天又吃了剩下的一半再多吃两粒,第四天打开糖盒时,里面只有4粒了,妈妈究竟买了多少粒水果糖?
39.甲、乙两个仓库共同储存一批粮食,甲仓库储存的粮食比这批粮食的多10t,乙仓库储存的粮食比这批粮食的少2t,这批粮食一共有多少吨?
40.
如果成套买,可以买几套运动服?
41.如图是红星小学教师喜欢看的电视节目统计图。
(1)喜欢看《走进科学》栏目的老师占( )%。
(2)喜欢看《动物世界》的老师比喜欢看《焦点访谈》的多20人,红星小学一共有多少名老师?
42.读图填空。
(1)科技书占图书总数的( )%。
(2)六年级5班文艺书、连环画、故事书三种书的数量的最简整数比是( )∶( )∶( )。
(3)如果六年级5班共有图书400本,那么班里的动漫书比连环画少几本?
43.如图是笑笑家12月家庭支出情况统计图。
(1)食品支出比文化支出多占总支出的( )%。
(2)笑笑家12月食品支出2700元,笑笑家12月总支出是多少元?
(3)笑笑家12月赡养老人支出多少元?
44.下图是希望小学六年级全体学生综合素质评价等级统计图。
(1)这是( )统计图。
(2)等级A占全年级人数的( )%,等级C占全年级人数的( )%。
(3)如果六年级共300人,等级B比等级C少多少人?
45.我们已经学习了“外方内圆”(如下图1)的问题,现在让你继续研究,你会有新的发现。
(1)图2的阴影部分面积是多少?(列式计算)
(2)通过上面两个图形的计算,你是否有所发现,按你的发现,那么如图3这样正方形中有16个小圆,阴影部分的面积是( )。
46.如图,用两个完全相同的正方形拼成一个长方形,图1是在长方形内所作的最大半圆,图2是长方形外的最小半圆。
我们知道:
①图1中,长方形的面积与半圆的面积比为 。
②图2中,半圆的面积与长方形的面积比为 。
请从上面两个结论中选择一个,写出你的证明过程。
47.一个圆形餐桌桌面的直径是2m.
(1)它的面积是多少平方米?
(2)如果在这张餐桌的中央放一个半径是0.8m的圆形转盘,剩下的桌面面积是多少平方米?(结果保留两位小数)
48.笑笑和淘气分别从A、B处出发,沿半圆走到C、D.
将他们两人走过的路程相关答案填入以下空中:
(1)笑笑所走过的路线的半径为10米,她走过的路程是_____m.
(2)淘气所走过的路线的半径为_____米,他走过的路程是_____m
(3)若淘气与笑笑比赛跑步,淘气的起跑线应该比笑笑提前_____m.
49.如图是圆的面积公式推导图,若剪拼成的近似平行四边形的底是12.56厘米,则这个圆的周长和面积分别是多少?
50.街心公园的中心有一个直径为10米的圆形喷水池,现要在水池的周围新建宽3米的花圃。李叔叔要沿着花圃的外侧另修一圈栅栏,他每分钟可以修2米。
(1)花圃的面积是多少?(如果你觉得有困难,可以先画示意图哦
(2)修完这些栅栏至少需要多少时间?(得数保留整数)
51.乘坐空调公交车每人每次需投币2元,如果刷IC卡,则每次扣费1.8元。刷IC卡比投币便宜了百分之几?
52.根据下列信息回答问题.
印刷厂的纸是以“令”来卖的.一令是500张.最普通的纸张是A4纸.A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分.一张A0纸的规格为1189毫米×841毫米,差不多有1平方米.如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等.
(1)需要多少张A4纸才能覆盖住一张A0纸?( )
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?( )
①420mm ②297mm ③210mm ④149mm
53.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。
54.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。
(1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗)
(2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)
55.按照下图方式摆放餐桌和椅子。
照这样摆下去,要坐34位客人需要多少张餐桌?(用方程解)
56.规定:如图1中,方格里的数表示在其周围8个方格中共有多少个△。即以“1”为中心,在它的四周8个方格中只能有1个△;以“2”为中心,在它的四周8个方格中只能有2个△;以“3”为中心,在它的四周8个方格中只能有3个△;依此类推。
按上述规定,在如图2中一共可以画12个△。现在已经画好了其中的2个,请你在合适的空格中补上其余的10个。
57.先画出第5个图形并填空。再想后面的第10个方框里有( )个点,第51个方框里有( )个点。
1 1+4 1+4×2 1+4×3 ( )
58.仔细观察表3,完成下列问题。
(1)小爱同学设计了一个由方格组成的圈数工具(如图1所示),在数表里圈了两组数(数表中的阴影部分)。请你从中任选一组求这6个数的和。列式并写出计算过程。
(2)如果小爱用这个圈数工具在数表中任意地圈数,请用含有字母与的等式表示这两个数之间的关系(与的位置如图2)。
(3)请你设计一个新的圈数工具在上面数表中圈数(圈数工具的方格与方格之间必须有连接的点或边),使它圈出的5个数之和是其中一个数(a)的5倍。在下面的方格图里画图表示,每个工具都要在相应的方格里写上。至少设计出6种圈数工具。(与图例重复不得分。)
59.一张桌子坐6人,两张桌子并起来坐10人,三张桌子并起来坐14人……
(1)照这样,18张桌子并成一排可以坐多少人?
(2)五(2)班有46位同学,需要多少张桌子并起来?
60.有苹果、梨、桃、枣四种水果,已知苹果和梨占总重量的,梨和桃占总重量的45%,枣占总重量的30%,又知桃比苹果多42千克。枣有多少千克?
61.五一期间,红星商场搞促销活动。一种空调的打折活动如下图。这种空调降价了百分之几?
62.读书节时小明看一本故事书。第一天看了45页,第二天看了全书的,第三天看了全书的20%,这本书一共有多少页?
63.一份稿件,打字员第一天打了总数的,第二天打了总数的40%,还剩70页未打,这份稿件有多少页?
64.幸福小区中心大花坛的占地面积有600平方米,其中30%种上了黄杨树。如果剩余面积按2∶3的比例种上杜鹃花和太阳花,请你算一算,种植杜鹃花的面积是多少平方米?
65.两桶油共重130千克,从甲桶取出25%倒入乙桶后,甲桶相当于乙桶的,甲、乙两桶原来各有油多少千克?
66.夏天天气炎热,人们都喜欢买西瓜来消暑解渴。“果色天香”水果店运进一批西瓜,第一天卖出的西瓜与剩下的西瓜的比是,如果再卖出360千克,就还剩下这批西瓜的。水果店运进的这批西瓜有多少千克?
67.一种优良花生仁的出油率约是42%,现在有1000千克的花生仁,能榨出花生油多少千克?
68.一堆煤,第一周烧了总数的,第二周烧了总数的25%,已知第二周比第一周多烧煤4.5吨,这堆煤共有多少吨?
69.目前,我国大部分城镇生活垃圾中,厨余垃圾约占。某镇引进厨余垃圾处理设备,集中借助生物技术处理厨余垃圾,其中10%可转化为有机肥料。某镇每天大约产生16.5吨生活垃圾,可以转化出多少吨有机肥料?
70.计算1+3+5+7+9+11+…+17+19=( )。
下面是三位同学的解法:
□小刚:1和19相加,3和17相加……一共有5组这样的加法,因此可以列式20×5计算。
□小红:根据我们学过的“数与形”的方法,这是一列从1到19的奇数列相加,可以用“10的平方”计算。
□小丽:假设这列数是1+2+3+4+5+…+19+20,可以列式(1+20)×20÷2-10×(10+1)计算。
(1)你觉得哪些同学的解法正确,在□里画√。
(2)用你喜欢的方法计算下题,请用递等式写出过程。
3+5+7+9+…+19+21
【参考答案】
1.120棵
【解析】
将一班植树棵数看作单位“1”,用一班植树棵数×二班对应分率,求出二班植树棵数,再将二班植树棵数看作单位“1”,用二班植树棵数×三班对应分率,就是三班植树棵数,据此列出综合算式解答
解析:120棵
【解析】
将一班植树棵数看作单位“1”,用一班植树棵数×二班对应分率,求出二班植树棵数,再将二班植树棵数看作单位“1”,用二班植树棵数×三班对应分率,就是三班植树棵数,据此列出综合算式解答即可。
160××=120(棵)
答:三班植树120棵。
【点睛】
关键是确定单位“1”,求一个数的几分之几是多少用乘法。
2.3200元
【解析】
先利用乘法求出爸爸妈妈的工资和,再将其乘(1-),求出李红家每月大约能结余多少元。
(4500+3500)×(1-)
=8000×
=3200(元)
答:李红家每月大约能结余3
解析:3200元
【解析】
先利用乘法求出爸爸妈妈的工资和,再将其乘(1-),求出李红家每月大约能结余多少元。
(4500+3500)×(1-)
=8000×
=3200(元)
答:李红家每月大约能结余3200元。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几是多少,用乘法。
3.225棵
【解析】
桃树的棵数=梨树的棵数×,把梨树的棵数代入计算即可。
150×=225(棵)
答:桃树有225棵。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
解析:225棵
【解析】
桃树的棵数=梨树的棵数×,把梨树的棵数代入计算即可。
150×=225(棵)
答:桃树有225棵。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
4.六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:2
解析:六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:240×=40(人)
因为48人>40人,所以六(1)班的人数多。
48-40=8(人)
答:六(1)班的人数多,多8人。
【点睛】
利用分数乘法求出两班的人数是解答题目的关键。
5.250×
【解析】
由题意,可把面粉的重量看作单位“1”,又知大米比面粉多,就是说大米比面粉多的重量占面粉的,要计算大米比面粉多多少千克可列式:250×。
250×=62.5(千克)
答:大米比面粉
解析:250×
【解析】
由题意,可把面粉的重量看作单位“1”,又知大米比面粉多,就是说大米比面粉多的重量占面粉的,要计算大米比面粉多多少千克可列式:250×。
250×=62.5(千克)
答:大米比面粉多62.5千克。
【点睛】
解答本题必须明确,单位“1”是哪个量,比较量又是谁,然后结合具体题意,按照一定的数量关系列式即可。
6.40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1-
解析:40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1--)×210
=×210
=40(筐)
答:水果店里还剩下40筐水果。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几是多少,用乘法。
7.320千米
【解析】
设甲车的速度是x千米/小时,则乙车的速度是x千米/小时,根据相遇时甲车比乙车多行80千米,据此列方程,解方程即可。
解:设甲车的速度是x千米/小时,则乙车的速度是x千米/小时。
解析:320千米
【解析】
设甲车的速度是x千米/小时,则乙车的速度是x千米/小时,根据相遇时甲车比乙车多行80千米,据此列方程,解方程即可。
解:设甲车的速度是x千米/小时,则乙车的速度是x千米/小时。
4x-x×4=80
1.6x=80
x=50
(50+50×)×4
=80×4
=320(千米)
答:两地相距320千米。
【点睛】
本题考查用方程解决实际问题,明确数量关系是解题的关键。
8.48辆
【解析】
公交车约200辆=纯电动车数量,据此解答即可。
(辆)
答:纯电动公交车有48辆。
【点睛】
本题考查分数乘法,解答本题的关键是找到题中的数量关系式。
解析:48辆
【解析】
公交车约200辆=纯电动车数量,据此解答即可。
(辆)
答:纯电动公交车有48辆。
【点睛】
本题考查分数乘法,解答本题的关键是找到题中的数量关系式。
9.504棵
【解析】
把杏树的棵数看作单位“1”,苹果树的棵数=杏树的棵数×(1+),据此解答。
360×(1+)
=360×
=504(棵)
答:苹果树有504棵。
【点睛】
已知一个数,求比这个数
解析:504棵
【解析】
把杏树的棵数看作单位“1”,苹果树的棵数=杏树的棵数×(1+),据此解答。
360×(1+)
=360×
=504(棵)
答:苹果树有504棵。
【点睛】
已知一个数,求比这个数多几分之几的数是多少,用分数乘法计算。
10.57米
【解析】
根据题意,把彩带的总长看作单位“1”,用总长的做了中国结,用总长的做了蝴蝶结,根据分数乘法的意义,分别用彩带的总长乘、,求出中国结、蝴蝶结用的米数,最后相加,就是这条彩带一共用的米
解析:57米
【解析】
根据题意,把彩带的总长看作单位“1”,用总长的做了中国结,用总长的做了蝴蝶结,根据分数乘法的意义,分别用彩带的总长乘、,求出中国结、蝴蝶结用的米数,最后相加,就是这条彩带一共用的米数。
60×+60×
=12+45
=57(米)
答:这条彩带一共用了57米。
【点睛】
明确求一个数的几分之几是多少,用乘法计算。
11.40个
【解析】
根据题意,已知小强的数量是小明的,用小明踢了数量×,求出小强踢的数量,小亮踢的数量是小强的,再用小强踢的数量×,即可求出小亮踢的数量。
96××
=60×
=40(个)
答:小亮踢
解析:40个
【解析】
根据题意,已知小强的数量是小明的,用小明踢了数量×,求出小强踢的数量,小亮踢的数量是小强的,再用小强踢的数量×,即可求出小亮踢的数量。
96××
=60×
=40(个)
答:小亮踢了40个。
【点睛】
本题考查求一个数的几分之几是多少。
12.140万元
【解析】
将全年盈利看作单位“1”,全年盈利×上半年盈利对应分率=上半年盈利,将上半年盈利看作单位“1”,上半年盈利×第四季度盈利对应分率=第四季度盈利,据此分析。
640××=140(
解析:140万元
【解析】
将全年盈利看作单位“1”,全年盈利×上半年盈利对应分率=上半年盈利,将上半年盈利看作单位“1”,上半年盈利×第四季度盈利对应分率=第四季度盈利,据此分析。
640××=140(万元)
答:该连锁商场2020年第四季度盈利140万元。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
13.21天
【解析】
将鹅的孵化期看作单位“1”,鹅的孵化期×鸭的对应分率×鸡的对应分率=鸡的孵化期。
(天)
答:鸡的孵化期是21天。
【点睛】
关键是理解分数乘法的意义,整体数量×部分对应分率=部分
解析:21天
【解析】
将鹅的孵化期看作单位“1”,鹅的孵化期×鸭的对应分率×鸡的对应分率=鸡的孵化期。
(天)
答:鸡的孵化期是21天。
【点睛】
关键是理解分数乘法的意义,整体数量×部分对应分率=部分数量。
14.100棵
【解析】
用300×即可求出柳树的棵数,再乘即可求出榕树的棵数。
300××
=200×
=100(棵);
答:榕树有100棵。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
解析:100棵
【解析】
用300×即可求出柳树的棵数,再乘即可求出榕树的棵数。
300××
=200×
=100(棵);
答:榕树有100棵。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
15.480××
【解析】
把蔬菜大棚共480平方米看作单位“1”,根据求一个数的几分之几是多少用乘法求出整块萝卜地的面积,再根据求一个数的几分之几是多少用乘法求出红萝卜地的面积。
480××
=240×
解析:480××
【解析】
把蔬菜大棚共480平方米看作单位“1”,根据求一个数的几分之几是多少用乘法求出整块萝卜地的面积,再根据求一个数的几分之几是多少用乘法求出红萝卜地的面积。
480××
=240×
=60(平方米)
答:红萝卜地有60平方米。
【点睛】
此题考查的是分数乘法的应用,找准单位“1”,明确单位“1”已知用乘法是解题关键。
16.75本
【解析】
用120×求出二毛的课外书本数,再乘即可求出小毛的课外书本数。
120××
=90×
=75(本);
答:小毛有75本课外书。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
解析:75本
【解析】
用120×求出二毛的课外书本数,再乘即可求出小毛的课外书本数。
120××
=90×
=75(本);
答:小毛有75本课外书。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
17.40棵
【解析】
将果树总棵数看作单位“1”,果树总棵数×梨树对应分率×桃树对应分率=桃树棵数。
420××=40(棵)
答:桃树有40棵。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
解析:40棵
【解析】
将果树总棵数看作单位“1”,果树总棵数×梨树对应分率×桃树对应分率=桃树棵数。
420××=40(棵)
答:桃树有40棵。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
18.平方米
【解析】
抓住“长是宽的2倍”,求得长。根据长方形面积公式即可解决。
42×2×42
=(平方米);
答:这块地的面积是平方米。
【点睛】
此题考查了长方形面积公式的应用。
解析:平方米
【解析】
抓住“长是宽的2倍”,求得长。根据长方形面积公式即可解决。
42×2×42
=(平方米);
答:这块地的面积是平方米。
【点睛】
此题考查了长方形面积公式的应用。
19.12岁
【解析】
根据题意,用爷爷的年龄乘爸爸的年龄占爷爷年龄的分率,求出爸爸的年龄;再乘我的年龄占爸爸年龄的分率,即可解题。
70××
=42×
=12(岁)
答:我今年是12岁。
【点睛】
熟练
解析:12岁
【解析】
根据题意,用爷爷的年龄乘爸爸的年龄占爷爷年龄的分率,求出爸爸的年龄;再乘我的年龄占爸爸年龄的分率,即可解题。
70××
=42×
=12(岁)
答:我今年是12岁。
【点睛】
熟练掌握求一个数的几分之几是多少的解题方法,是解答此题的关键。
20.480只
【解析】
把要折的纸花总数看作单位“1”,第一天完成了任务的,用纸花的总数×,求出第一天折纸花的数量;第二天完成了余下任务的,是把余下的数量看作单位“1”,先用总数减去第一天折的数量求出余
解析:480只
【解析】
把要折的纸花总数看作单位“1”,第一天完成了任务的,用纸花的总数×,求出第一天折纸花的数量;第二天完成了余下任务的,是把余下的数量看作单位“1”,先用总数减去第一天折的数量求出余下的数量,再乘,即是第二天折的数量;最后用总数分别减去第一天、第二天折的数量,求出第三天需要折纸花的数量。
第一天完成:1200×=240(只)
第二天完成:
(1200-240)×
=960×
=480(只)
第三天需完成:
1200-240-480
=960-480
=480(只)
答:第三天需要折480只才能完成任务。
【点睛】
分数乘法的意义:求一个数的几分之几是多少,用乘法计算。
21.6千米
【解析】
解析:6千米
【解析】
22.180千克
【解析】
36÷(1--×)=180(千克)
解析:180千克
【解析】
36÷(1--×)=180(千克)
23.千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
解析:千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
24.12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学
解析:12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学生数,再进一步得出结论。
原来男生人数:
(名)
后来学生总数:
(名)
(名)
答:后来又来了12名女生。
【点评】
明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。
25.甲:30吨,乙:24吨
【解析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了之后,剩余粮食为(1-)x;乙仓用了之后,剩余粮食为(1-)×(54-x);此时剩下的两仓一样多,据此列
解析:甲:30吨,乙:24吨
【解析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了之后,剩余粮食为(1-)x;乙仓用了之后,剩余粮食为(1-)×(54-x);此时剩下的两仓一样多,据此列出方程解答。
解:设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨。
(1-)x=(1-)×(54-x)
x=×(54-x)
x=×54-x
x+x=×54
x=
x=÷
x=30
54-30=24(吨)
答:原甲仓存粮30吨,乙仓存粮24吨。
【点睛】
用方程解答关键是找出等量关系式:甲仓库原存粮吨数×剩余存粮所占分率=乙仓库原存粮吨数×剩余存粮所占分率,并根据等式的性质解方程。
26.600千米
【解析】
甲、乙两地间的距离看作单位“1”,时间分之一可以看成速度,快车速度看作,慢车速度看作,用速度和×时间=行驶路程,求出4小时行驶了全程的对应分率,用200千米÷对应分率即可。
(
解析:600千米
【解析】
甲、乙两地间的距离看作单位“1”,时间分之一可以看成速度,快车速度看作,慢车速度看作,用速度和×时间=行驶路程,求出4小时行驶了全程的对应分率,用200千米÷对应分率即可。
(+)×4
=×4
=
200÷(1-)
=200÷
=600(千米)
答:甲、乙两地相距600千米。
【点睛】
关键是确定单位“1”,理解速度、时间、路程之间的关系,找到相距200千米的对应分率。
27.50000个
【解析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,
解析:50000个
【解析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,在分数除法应用题中广泛应用,但量和率一定要对应。
28.①如果每月通话300分钟,第一种通话计费方式便宜
②每月通话200分钟,两种计费方式的通话费正好相等
【解析】
(1)如果每月通话300分钟,按第一种计费方式应付费=月租费+每分钟通话费×通话时间;
解析:①如果每月通话300分钟,第一种通话计费方式便宜
②每月通话200分钟,两种计费方式的通话费正好相等
【解析】
(1)如果每月通话300分钟,按第一种计费方式应付费=月租费+每分钟通话费×通话时间;再计算出第二种计费方式应交的话费,再比较;
(3)设出通话时间,根据等量关系式:20+通话时间×0. 18=0. 28×通话时间,列方程解答即可。
①20+0.18×300
=20+54
=74(元)
0.28×300=84(元)
84>74
答:如果每月通话300分钟,第一种通话计费方式便宜。
②解:设每月通话分钟,两种计费方式的通话费正好相等
答:每月通话200分钟,两种计费方式的通话费正好相等
【点睛】
此题应通过分析,找出正确的等量关系,进而列式计算得出问题结论。
29.6天
【解析】
将这批零件看成单位“1”,完成这批零件共用了的天数=甲、乙两人合作完成零件的几分之几÷甲、乙两人合作每天完成这批零件的几分之几+途中甲请假的天数,其中甲、乙两人合作完成零件的几分之几
解析:6天
【解析】
将这批零件看成单位“1”,完成这批零件共用了的天数=甲、乙两人合作完成零件的几分之几÷甲、乙两人合作每天完成这批零件的几分之几+途中甲请假的天数,其中甲、乙两人合作完成零件的几分之几=1-乙每天完成这批零件的几分之几×途中甲请假的天数,甲、乙两人合作每天完成这批零件的几分之几=甲每天完成这批零件的几分之几+乙每天完成这批零件的几分之几,据此代入数据作答即可。
(天)
答:完成这批零件共用了6天。
30.20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可
解析:20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可装水多少千克即可。
乙桶能装水:
12÷(1-)
=12÷
=15(千克)
甲桶能装水的质量:
15×(÷)
=15×
=20(千克)
答:甲桶可装水20千克。
【点睛】
解答此题的关键是弄清甲桶的容量是乙桶的。
31.28分
【解析】
长方形内最大的三角形等于长方形面积的一半,这样的三角形一定有一条边与长方形的某条边重合,且另一个顶点恰好在该长方形的对边上。所以只要讨论三人中有两个人在长方形的顶点上的情况,因为长
解析:28分
【解析】
长方形内最大的三角形等于长方形面积的一半,这样的三角形一定有一条边与长方形的某条边重合,且另一个顶点恰好在该长方形的对边上。所以只要讨论三人中有两个人在长方形的顶点上的情况,因为长方形的长AD与宽AB的比为5∶3,所以将长方形的长5等份,宽3等份,将其周长分为16段,又因为甲、乙、丙三人的速度比为4∶3∶5,所以他们所行的路程比也是4∶3∶5,设甲走4段用1个单位时间,那么一个单位时间内乙、丙分别走3段、5段,由于4、3、5两两互质,所以在非整数单位时间内甲、乙、丙三人最多有一人走了整数段,所以只考虑整数单位时间。然后对到达顶点的情况一一列举即可,得到满足条件的单位时间点,再根据第一次构成长方形中最大的三角形的时间是12分钟,从而求出一个单位时间相当于多少分钟,根据列表知道第二次构成最大三角形需要几个时间单位,求出再过多少分钟,三人所在位置的点的连线第二次构成最大三角形,据此解答。
根据分析将长方形的长为5等份,宽为3等份,那么长方形的周长为16段,设甲走4段用1个单位时间,那么一个单位时间内乙、丙分别走3段、5段,根据分析又知道只有整数单位时间才符合题意,所以只考虑整数单位时间,所以三人到达顶点的情况列表如下:
甲
单位时间
2
4
6
8
10
12
14
16
……
地点
C
A
C
A
C
A
C
C
……
乙
单位时间
2
3
10
11
18
19
26
27
展开阅读全文