1、部编版八年级下册数学期末试卷培优测试卷一、选择题1要使式子有意义,则x的值可以为( )A6B0C2D2由下列线段组成的三角形不是直角三角形的是()A7,24,25B4,5,C3,5,4D4,5,63在下列条件中,不能判定四边形为平行四边形的是( )A对角线互相平分B一组对边平行且相等C两组对角分别相等D对角线互相垂直4某公司要招聘一位高管,面试时,一位应聘者的基本知识、表达能力,决策能力的得分分别是90分、82分,83分,若依次按20%,40%,40%的比例确定成绩,则应聘者的最终面试成绩是( )A82分B83分C84分D85分5如图,在四边形中,且,则四边形的面积是( )ABCD6如图,在菱
2、形ABCD中,A110,E,F分别是边AB和BC的中点,EPCD于点P,则FPC()A35B45C50D557如图,在平行四边形纸片ABCD中,对角线AC与BD相交于点E,AEB45,BD4,将纸片沿对角线AC对折,使得点B落在点B的位置,连接DB,则DB的长为()A2B2C4D158如图,在平面直角坐标系中,点在x轴正半轴上,点在直线上,若,且均为等边三角形,则线段的长度为( )ABCD二、填空题9若y,则x+y的值为 _10已知菱形的边长为2,一个内角为,那么该菱形的面积为_11如图,在中,则斜边的长为_. 12如图,点P是矩形ABCD的对角线AC上一点,过点P作EFBC,分别交AB,CD
3、于点E、F,连接PB、PD,若AE2,PF9,则图中阴影面积为_;13过点,则_14如图所示,在四边形ABCD中,顺次连接四边中点E、F、G、H,构成一个新的四边形,请你对四边形ABCD添加一个条件,使四边形EFGH成一个菱形,这个条件是_15A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,如图,l1,l2表示两人离A地的距离:s(km)与时间t(h)的关系,则乙出发_h两人恰好相距5千米16如图,中,将折叠,使点与的中点重合,折痕为则线段的长为_三、解答题17计算:(1)(1); (2)18笔直的河流一侧有一旅游地C,河边有两个漂流点A,B其中ABAC,由于某种原因,由C到A
4、的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B在同一直线上),并新修一条路CH,测得BC5千米,CH4千米,BH3千米(1)判断BCH的形状,并说明理由;(2)求原路线AC的长19图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上(1)在图1中画出一个以AB为一边正方形ABCD,使点C、D在小正方形的顶点上;(2)在图2中画出一个以AB为一边,面积为6的ABEF,使点E、F均在小正方形的顶点上,并直接写出ABEF周长20如图,平行四边形的对角线、相较于点O,且,求证:四边形是矩形21阅读理解:把分母中的根号化
5、去叫做分母有理化,例如:;等运算都是分母有理化,根据上述材料,(1)化简:;(2)+22某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务)(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店只有2名员工,则该店最早需要多少天能还清所有
6、债务,此时每件服装的价格应定为多少元?23已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转(),得到线段CE,联结BE、CE、DE. 过点B作BFDE交线段DE的延长线于F(1)如图,当BE=CE时,求旋转角的度数;(2)当旋转角的大小发生变化时,的度数是否发生变化?如果变化,请用含的代数式表示;如果不变,请求出的度数;(3)联结AF,求证:24已知:在平面直角坐标系中,点为坐标原点,直线交轴于点,交轴于点(1)如图1,求点的坐标;(2)如图2,点为线段上一点,点为轴负半轴上一点,连接,且,设点的横坐标为,的长为,求与之间的函数解析式(不要求写出自变量的取值范围);(3)如图3,在(2)
7、的条件下,过点作的垂线,分别交轴,于点,过点作于点,连接,若平分的周长,求的值25在正方形ABCD中,AB4,点E是边AD上一动点,以CE为边,在CE的右侧作正方形CEFG,连结BF(1)如图1,当点E与点A重合时,则BF的长为 (2)如图2,当AE1时,求点F到AD的距离和BF的长(3)当BF最短时,请直接写出此时AE的长【参考答案】一、选择题1D解析:D【分析】根据二次根式有意义的条件列出不等式,解不等式即可【详解】解:由题意得:x30,解得:x3,各个选项中,符合题意,故选:D【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质2D解析:D【分析】根据勾股定理的逆定理
8、对各选项进行逐一判断即可【详解】解:A、72+242=625=252,能够成直角三角形,故本选项不符合题意;B、42+52=41=()2,能够成直角三角形,故本选项不符合题意;C、32+42=52,能够成直角三角形,故本选项不符合题意;D、42+5262,不能够成直角三角形,故本选项符合题意故选:D【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形3D解析:D【解析】【分析】利用平行四边形的判定可求解【详解】解:A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;B、一组对边平行且相等的四边形是平行四边形,故该选项不符
9、合题意;C、两组对角分别相等的四边形是平行四边形,故该选项不符合题意;D、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;故选:D【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键4C解析:C【解析】【分析】根据加权平均数的计算公式进行计算,即可得出答案【详解】解:根据题意得:9020%+8240%+8340%=84(分);故选:C【点睛】本题主要考查了加权平均数的计算,掌握加权平均数的定义是解题的关键5B解析:B【分析】利用勾股定理求出AC2的值,再由勾股定理的逆定理判定ACD也为直角三角形,则S四边形ABCD=SABC+SACD【详解】解:如图,连接AC在
10、RtABC中,AC2=AB2+BC2=2,AC2+CD2=AD2,CDA也为直角三角形,S四边形ABCD=SABC+SACD=ABBC+ACCD=故四边形ABCD的面积是故选B.【点睛】本题考查勾股定理及其逆定理的应用解答此题的关键是作出辅助线,构造出直角三角形,求出AC的长6D解析:D【解析】【分析】延长PF交AB的延长线于点G根据已知可得B,BEF,BFE的度数,再根据余角的性质可得到EPF的度数,从而不难求得FPC的度数【详解】解:延长PF交AB的延长线于点G在BGF与CPF中, BGFCPF(ASA),GFPF,F为PG中点又由题可知,BEP90,(直角三角形斜边上的中线等于斜边的一半
11、),(中点定义),EFPF,FEPEPF,BEPEPC90,BEPFEPEPCEPF,即BEFFPC,四边形ABCD为菱形,ABBC,ABC180A70,E,F分别为AB,BC的中点,BEBF, 易证FEFG,FGEFEG55,AGCD,FPCEGF55故选D【点睛】此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键7A解析:A【解析】【分析】先利用平行四边形的性质得到,再由折叠的性质得到,由此可得到,再利用勾股定理求解即可【详解】解:四边形ABCD是平行四边形,由折叠的性质可知:,在直角三角形中,故选A【点睛】本题主要考查了平行四边形的性质,折叠的性质,勾股定理,解题的
12、关键在于能够熟练掌握相关知识进行求解8D解析:D【分析】根据题意得出AnOBn=30,从而推出AnBn=OAn,得到BnBn+1=BnAn+1,算出B1A2=1,B2A3=2,B3A4=4,找出规律得到BnAn+1=2n-1,从而计算结果【详解】解:设BnAnAn+1的边长为an,点B1,B2,B3,是直线上的第一象限内的点,过点A1作x轴的垂线,交直线于C,A1(1,0),令x=1,则y=,A1C=,AnOBn=30,均为等边三角形,BnAnAn+1=60,OBnAn=30,AnBn=OAn,BnAn+1Bn+1=60,An+1BnBn+1=90,BnBn+1=BnAn+1,点A1的坐标为(
13、1,0),A1B1=A1A2=B1A2=1,A2B2=OA2=B2A3=2,A3B3=OA3=B3A4=4,.,AnBn=OAn=BnAn+1=2n-1,=B2019A2020=,故选D【点睛】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,本题属于基础题,难度不大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键二、填空题9【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式求出x,进而求出y,计算即可【详解】解:由题意得:2x-10,1-2x0,解得:x=,y=3,x+y=+3=,故答案为:【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方
14、数是非负数是解题的关键10A解析:【解析】【分析】连接AC,过点A作AMBC于点M,根据菱形的面积公式即可求出答案【详解】解:过点A作AMBC于点M,菱形的边长为2cm,AB=BC=2cm,有一个内角是60,ABC=60,BAM=30,(cm),(cm),此菱形的面积为:(cm2)故答案为:【点睛】本题主要考查了菱形的性质和30直角三角形性质,解题的关键是熟练运用菱形的性质,本题属于基础题型11A解析:2【解析】【分析】根据三角形的面积可求得两直角边的乘积的值,再根据完全平方和公式即可求得AB的长.【详解】C=90,AB2=AC2+BC2,SABC=ACBC=1,ACBC=2,AC+BC=2,
15、(AC+BC)2=AC2+BC2+2ACBC=AB2+22=(2)2,AB2=8,AB=2,故答案为2.【点睛】本题考查了勾股定理,完全平方公式,熟练掌握勾股定理的内容以及完全平方公式的变形是解题的关键.12A解析:【分析】作PMAD于M,交BC于N,根据矩形的性质可得SPEB=SPFD即可求解.【详解】解:作PMAD于M,交BC于N则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,,,S阴=9+9=18,故答案为:18【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明131【分析】把代入函数解析式即可求解【详解】代入得3=2k+1解得k=1故答案为:1
16、【点睛】此题主要考查求一次函数的解析式,解题的关键是熟知待定系数法的运用14A解析:答案不唯一,例AC=BD 等【分析】连接AC、BD,先证明四边形ABCD是平行四边形,再根据菱形的特点添加条件即可.【详解】连接AC,点E、F分别是AB、BC的中点,EF是ABC的中位线,EFAC,EF=AC,同理HGAC,HG=AC,EFHG,EF=HG,四边形EFGH是平行四边形,连接BD,同理EH=FG,EFFG,当AC=BD时,四边形EFGH是平行四边形,故答案为:答案不唯一,例AC=BD 等.【点睛】此题考查三角形中位线性质,平行四边形的判定及性质,菱形的判定.158或1【分析】分相遇前或相遇后两种情
17、形分别列出方程即可解决问题【详解】解:由题意可知,乙的函数图象是l2,甲的速度是30(km/h),乙的速度是20(km/h)设乙出发x小时两人解析:8或1【分析】分相遇前或相遇后两种情形分别列出方程即可解决问题【详解】解:由题意可知,乙的函数图象是l2,甲的速度是30(km/h),乙的速度是20(km/h)设乙出发x小时两人恰好相距5km由题意得:30(x+0.5)+20x+560或30(x+0.5)+20x560,解得x0.8或1,所以甲出发0.8小时或1小时两人恰好相距5km故答案为:0.8或1【点睛】本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解
18、决问题164【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在利用勾股定理列方程解出x,就求出BN的长【详解】D是CB中点,BC=6BD=3设BN=x,AN=9-x,由折叠,DN=A解析:4【分析】根据题意,设BN=x,由折叠DN=AN=9-x,在利用勾股定理列方程解出x,就求出BN的长【详解】D是CB中点,BC=6BD=3设BN=x,AN=9-x,由折叠,DN=AN=9-x,在中,解得x=4BN=4故答案是:4【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长三、解答题17(1)4;(2)3【分析】(1)根据二次根式的混合运算法则先算
19、乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可【详解】(1)解析:(1)4;(2)3【分析】(1)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可;(2)根据二次根式的混合运算法则先算乘法,然后合并同类二次根式求解即可【详解】(1)(1)(2)【点睛】此题考查了二次根式的加减乘法运算,解题的关键是熟练掌握二次根式的加减乘法运算法则18(1)直角三角形,理由见解析;(2)原来的路线AC的长为千米【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】解:(1)HBC是直角三角形,理由是:在解析:(1
20、)直角三角形,理由见解析;(2)原来的路线AC的长为千米【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】解:(1)HBC是直角三角形,理由是:在CHB中,CH2+BH2=42+32=25,BC2=25,CH2+BH2=BC2,HBC是直角三角形且CHB=90;(2)设AC=AB=x千米,则AH=AB-BH=(x-3)千米,在RtACH中,由已知得AC=x,AH=x-3,CH=4,由勾股定理得:AC2=AH2+CH2,x2=(x-3)2+42,解这个方程,得x=,答:原来的路线AC的长为千米【点睛】本题考查勾股定理的应用,解决本题的关键是掌握勾股定理的逆定理和定理1
21、9(1)见解析;(2)见解析;周长为4+2【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案【详解】(1)解析:(1)见解析;(2)见解析;周长为4+2【解析】【分析】(1)直接利用网格结合正方形的性质得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出答案【详解】(1)如图1,将绕点逆时针旋转得,将绕点顺时针旋转得,连接,正方形ABCD即为所求(2)如图2所示,SABEF由题意可知:平行四边形ABEF即为所求周长为【点睛】本题考查作图、勾股定理、正方形的性质等知识,解题的关键是理解题意,学会利
22、用数形结合的思想思考问题20见解析【分析】先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,证明四边形是平行四边形,即可得到平行四边形是矩形【详解】证明:四边形是平行四边形且平行四边形是菱形解析:见解析【分析】先根据四边形是平行四边形且得到平行四边形是菱形,即可得到,再根据,证明四边形是平行四边形,即可得到平行四边形是矩形【详解】证明:四边形是平行四边形且平行四边形是菱形,即又,四边形是平行四边形,平行四边形是矩形 【点睛】本题主要考查了平行四边形的判定,矩形的判定,菱形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解21(1)+;(2)【解析】【分析】(1)分母有理化
23、即可;(2)先分母有理化,然后合并即可【详解】解:(1);(2)+ 【点睛】此题考查了二次根式的分母有理化,本题解析:(1)+;(2)【解析】【分析】(1)分母有理化即可;(2)先分母有理化,然后合并即可【详解】解:(1);(2)+ 【点睛】此题考查了二次根式的分母有理化,本题中二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子找出分母的有理化因式是解本题的关键22(1)(2)380天,55元【分析】(1)根据函数图像,待定系数法求解析式即可;(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值【详解】(1)当时解
24、析:(1)(2)380天,55元【分析】(1)根据函数图像,待定系数法求解析式即可;(2)设需要天,该店能还清所有债务,根据题意,列一元一次不等式,根据二次函数的性质求得最值【详解】(1)当时,设与的函数关系是为,有函数图像可知,函数图像经过点解得当时,设与的函数关系是为,有函数图像可知,函数图像经过点解得综上所述,(2)设设需要天,该店能还清所有债务,根据题意,当时,当时,的最大值为即,当时,当时,的最大值为即,综上所述,时,即最早需要天还清所有债务,此时服装定价为元【点睛】本题考查了一次函数的应用,二次函数的应用,掌握二次函数的性质是解题的关键23(1)30;(2)不变;45;(3)见解析
25、【分析】(1)利用图形的旋转与正方形的性质得到BEC是等边三角形,从而求得=DCE=30(2)因为CED是等腰三角形,再利用三角形的内角解析:(1)30;(2)不变;45;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到BEC是等边三角形,从而求得=DCE=30(2)因为CED是等腰三角形,再利用三角形的内角和即可求BEF=.(3)过A点与C点添加平行线与垂线,作得四边形AGFH是平行四边形,求得ABGADH.从而求得矩形AGFH是正方形,根据正方形的性质证得AHDDIC,从而得出结论【详解】(1)证明:在正方形ABCD中, BC=CD.由旋转知,CE=CD,又BE=CE,BE=CE
26、=BC,BEC是等边三角形,BCE=60.又BCD=90,=DCE=30.(2)BEF的度数不发生变化.在CED中,CE=CD,CED=CDE=,在CEB中,CE=CB,BCE=,CEB=CBE=,BEF=.(3)过点A作AGDF与BF的延长线交于点G,过点A作AHGF与DF交于点H,过点C作CIDF于点I 易知四边形AGFH是平行四边形,又BFDF,平行四边形AGFH是矩形.BAD=BGF=90,BPF=APD ,ABG=ADH.又AGB=AHD=90,AB=AD,ABGADH.AG=AH ,矩形AGFH是正方形.AFH=FAH=45,AH=AFDAH+ADH=CDI+ADH=90DAH=C
27、DI又AHD=DIC=90,AD=DC,AHDDICAH=DI,DE=2DI,DE=2AH=AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型24(1)点的坐标为;(2);(3)12【解析】【分析】(1)根据点A的坐标求出函数解析式,即可求解;(2)过点作轴于点,可用t表示出点P的坐标,根据(1)可知,可知,设,根据,可得:,从而,即解析:(1)点的坐标为;(2);(3)12【解析】【分析】(1)根据点A的坐标求出函数解析式,即可求解;(2)过点作轴于点,可用t表示出点P的坐标,根据(1)可
28、知,可知,设,根据,可得:,从而,即可解答;(3)作轴于点,延长至点,使,连接,过点作的垂线交的延长线于点由(2)可得:,可证,进而可证,可得,列出关于t的等式即可求解【详解】解:(1)直线经过点, 当时,点的坐标为;(2)如图1,过点作轴于点,图1点在直线上,点的横坐标为,点的坐标为,设,又,;(3)作轴于点,延长至点,使,连接,过点作的垂线交的延长线于点图2,轴,平分的周长,【点睛】本题是一次函数与几何综合题,在一次函数的背景下考查全等三角形的性质与判定等知识;构造合适的辅助线是解决本题的关键25(1);(2)点F到AD的距离为3,BF=;(3)2【分析】(1)连接DF,证明ADFCDA,
29、得出CDF共线,然后用勾股定理即可;(2)过点F作FHAD交AD的延长线于点H,FHBC解析:(1);(2)点F到AD的距离为3,BF=;(3)2【分析】(1)连接DF,证明ADFCDA,得出CDF共线,然后用勾股定理即可;(2)过点F作FHAD交AD的延长线于点H,FHBC交BC的延长线于K,证明EHFCDE,再用勾股定理即可;(3)当B,D,F共线时,此时BF取最小值,求出此时AE的值即可【详解】解:(1)如图,连接DF,CAF=90,CAD=45,DAF=45,在CAD和FAD中,CADFAD(SAS),DF=CD,ADC=ADF=90,C,D,F共线,BF2=BC2+CF2=42+82
30、=80,BF,故答案为:;(2)如图,过点F作FHAD交AD的延长线于点H,FHBC交BC的延长线于K,四边形CEFG是正方形,EC=EF,FEC=90,DEC+FEH=90,又四边形ABCD是正方形,ADC=90,DEC+ECD=90,ECD=FEH,又EDC=FHE=90,在ECD和FEH中,ECDFEH(AAS),FH=ED,AD=4,AE=1,ED=AD-AE=4-1=3,FH=3,即点F到AD的距离为3,DHK=HDC=DCK=90,四边形CDHK为矩形,HK=CD=4,FK=FH+HK=3+4=7,ECDFEH,EH=CD=AD=4,AE=DH=CK=1,BK=BC+CK=4+1=5,在RtBFK中,BF;(3)当A,D,F三点共线时,BF的最短,CBF=45,FH=DH,由(2)知FH=DE,EH=CD=4,ED=DH=42=2,AE=2【点睛】本题主要考查正方形的性质和全等三角形的判定,关键是要作辅助线构造全等的三角形,在正方形和三角形中辅助线一般是垂线段,要牢记正方形的两个性质,即四边相等,四个内角都是90