资源描述
部编版八年级下册数学期末试卷测试卷(解析版)
一、选择题
1.二次根式中,x的取值范围是( )
A.x≥3 B.x≥1 C.1≤x≤3 D.不能确定
2.下列各组数中,不能构成直角三角形的一组是 ( )
A.7,24,25 B.,4,5 C.3,4,5 D.4,5,6
3.如图,E是的边延长线上一点,连结交于点F,连结,,添加以下条件,不能判定四边形为平行四边形的是( )
A. B. C. D.
4.某次竞赛每个学生的综合成绩得分(x)与该学生对应的评价等次如表.
综合成绩(x)=预赛成绩×30%+决赛成绩×70%
x≥90
80≤x<90
评价等次
优秀
良好
小华同学预赛成绩为80,综合成绩位于良好等次,他决赛的成绩可能为( )A.71 B.79 C.87 D.95
5.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13其中能判断△ABC是直角三角形的个数有( )
A.1个 B.2个 C.3个 D.4个
6.如图,在平行四边形纸片ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=4,将纸片沿对角线AC对折,使得点B落在点B′的位置,连接DB',则DB'的长为( )
A.2 B.2 C.4 D.15
7.如图,在中,,,是的角平分线交于点,若,则的面积是( )
A. B.75 C. D.
8.如图,直线l:y=﹣x++3与x轴交于点A,与经过点B(﹣2,0)的直线m交于第一象限内一点C,点E为直线l上一点,点D为点B关于y轴的对称点,连接DC、DE、BE,若∠DEC=2∠DCE,∠DBE=∠DEB,则CD2的值为( )
A.20+4 B.44+4
C.20+4或44﹣4 D.20﹣4或44+4
二、填空题
9.式子在实数范围内有意义,则实数x的取值范围是________.
10.如图,在菱形ABCD中对角线AC、BD相交于点O,若AB=3,BD=4,则菱形ABCD的面积为_____.
11.在中,,,,则长为______.
12.如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________.
13.若一次函数(为常数)的图象经过点(,9),则____.
14.如图,在平面直角坐标系中,矩形的顶点、的坐标分别为,,点是的中点,点在上运动,点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,则点的坐标为__________.
15.如图1,在长方形中,动点P从点A出发,沿方向运动至D点处停止,设点P出发时的速度为每秒,a秒后点P改变速度,以每秒向点D运动,直到停止.图2是的面积与时间的图像,则b的值是_________.
16.如图,长方形纸片ABCD中,AB=8cm,BC=17cm,点O在边BC上,且OB=10cm.将纸片沿过点O的直线折叠,若点B恰好落在边AD上的点F处,则AF的长为 _____cm.
三、解答题
17.计算
(1)
(2)(+)(-)
(3)
(4)
18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即尺,则此时秋千的踏板离地的距离就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.
19.如图,在平面直角坐标系中,网格中每一个小正方形的边长都是1个单位长度.
(1)画出△ABC关于y轴对称的图形△A′B′C′,写出C的坐标;
(2)求△ABC中AC边上的高.
20.如图,在矩形ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:
(1)△ABE≌DCF;
(2)四边形AEFD是平行四边形;探究:连结DE,若DE平分∠AEC,直接写出此时四边形AEFD的形状.
21.观察下列等式:
①;②;③;……
回答下列问题:
(1)利用你观察到的规律,化简:
(2)计算: +++……+
22.一辆汽车油箱内有油a升,从某地出发,每行驶1小时耗油6升,若设剩余油量为Q升,行驶时间为t小时,根据以上信息回答下列问题:
(1)开始时,汽车的油量a= 升;
(2)在行驶了 小时汽车加油,加了 升;
(3)根据图象求加油前Q与t之间的关系式,并写出t的取值范围.
23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF.
(1)求证:四边形ABCD是菱形;
(2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域;
(3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为 .(请将答案直接填写在空格内)
24.已知:直线与轴、轴分别相交于点和点,点在线段上.将沿折叠后,点恰好落在边上点处.
(1)直接写出点、点的坐标:
(2)求的长;
(3)点为平面内一动点,且满足以、、、为顶点的四边形为平行四边形,请直接回答:
①符合要求的点有几个?
②写出一个符合要求的点坐标.
25.(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ;
(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;
(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据二次根式的被开方数为非负数可计算求解.
【详解】
解:由题意得且,
解得,
故选:A.
【点睛】
本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
2.D
解析:D
【分析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.
【详解】
解:A、72+242=252,能构成直角三角形,故此选项不符合题意;
B、42+52=()2,能构成直角三角形,故此选项不符合题意;
C、32+42=52,能构成直角三角形,故此选项不符合题意;
D、52+42≠62,不能构成直角三角形,故此选项符合题意.
故选:D.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3.B
解析:B
【解析】
【分析】
根据平行四边形的判定定理逐项推理证明即可.
【详解】
解:∵ DE∥BC,
∴∠DEF=∠CBF,
∠DEF=∠CBF,
在△DEF与△CBF中,
∴△DEF≌△CBF(ASA),
∴DF=CF,
∵EF=BF,
∴四边形BCED为平行四边形,故A不符合题意;
∵AE∥BC,
∴∠AEB=∠CBF,
∵∠AEB=∠BCD,
∴∠CBF=∠BCD,
∴CF=BF,
同理,EF=DF,
∴不能判定四边形BCED为平行四边形;
故B符合题意;
∵四边形ABCD是平行四边形,
∴ .AD∥BC,AB∥CD,
∴DE∥CE,∠ABD=∠CDB,
又∵∠ABD=∠DCE,
∴∠DCE=∠CDB,
∴BD∥CE,
∴四边形BCED为平行四边形,
故C不符合题意;
∵AE∥BC,
∴∠DEC+∠BCE=∠EDB+∠DBC=180°,
∵∠AEC=∠CBD,
∴∠BDE=∠BCE,
∴四边形BCED为平行四边形,
故D不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.
4.C
解析:C
【解析】
【分析】
设他决赛的成绩为x分,根据综合成绩所处位次得出80≤80×30%+70%x<90,解之求出x的范围即可得出答案.
【详解】
解:设他决赛的成绩为x分,
根据题意,得:80≤80×30%+70%x<90,
解得80≤x<94,
∴各选项中符合此范围要求的只有87,
故选:C.
【点睛】
本题主要考查加权平均数,解题的关键是根据加权平均数的定义及综合成绩位次列出关于x的不等式组.
5.C
解析:C
【解析】
【分析】
根据三角形的内角和定理和勾股定理的逆定理分析判断即可.
【详解】
解:①∵∠A=∠B﹣∠C,
∴∠A+∠C=∠B,
∵∠A+∠B+∠C=180°,
∴2∠B=180°,
∴∠B=90°,
∴△ABC是直角三角形,
∴①正确;
②a2=(b+c)(b﹣c),
∴a2=b2﹣c2,
∴a2+c2=b2,
∴△BAC是直角三角形,
∴②正确;
③∵a:b:c=3:4:5,
∴设a=3k,b=4k,c=5k,
∵a2+b2=25k2,c2=25k2,
∴a2+b2=c2,
∴△ABC是直角三角形,
∴③正确;
故选:D.
【点睛】
直角三角形的判定是本题的考点,熟练运用勾股定理的逆定理和三角形的内角和定理是解题的关键,此类题型属于基础题.
6.A
解析:A
【解析】
【分析】
先利用平行四边形的性质得到,再由折叠的性质得到,,由此可得到,再利用勾股定理求解即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴,
由折叠的性质可知:,,
∴,
∴,
∴在直角三角形中,
故选A.
【点睛】
本题主要考查了平行四边形的性质,折叠的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解.
7.C
解析:C
【解析】
【分析】
先利用勾股定理和含30度的直角三角形的性质求出,再由角平分线的定义得到,即可求得,,再由进行求解即可.
【详解】
解:∵∠C=90°,∠CAB=60°,
∴∠B=30°,
∴AB=2AC=30,
∴,
∵AD平分∠CAB,
∴,
∴AD=2CD,
∵,
∴,
∴,
∴,
∴,
故选C.
【点睛】
本题主要考查了勾股定理,含30度角的直角三角形的性质,解题的关键在于能够熟练张相关知识进行求解.
8.C
解析:C
【分析】
过点D作DF⊥l于点F,延长FD交y轴于点G,求出DF的解析式,联立方程组,求出点F的坐标,分点E在点F的上方和下方两种情况结合勾股定理求出结论即可.
【详解】
解:过点D作DF⊥l于点F,延长FD交y轴于点G,
∵点B(﹣2,0),且点D为点B关于y轴的对称点,
∴D(2,0)
∴BD=4
又∠DBE=∠DEB,
∴DE=BD=4
对于直线l:y=﹣x++3,当x=0时,y=+3;当y=0时,x=+3
∴OH=+3,AO=+3
∴
∴
∴
∴
又
∴,
∴
∴
设直线DF所在直线解析式为
把,D(2,0)代入得,
解得,
∴直线DF所在直线解析式为
联立,
解得,
∴F(,)
∴
在Rt△DFE中,
∴
①当E在F下方时,如图1,在E点下方直线l上取一点M,使EM=DE=4,连接DM,
∵EM=DE
∴
又∵
∴
又∵
∴
∴DC=DM
在Rt△DFM中,
∴
②当点E在F的上方时,如图2,在E点下方直线l上取一点M,使EM=DE=4,连接DM,
∵EM=DE
∴
又∵,
∴
∴DC=DM
∴
在Rt△DFM中,
∴
综上所述,或
故选:C
【点睛】
本题是一次函数的综合题;灵活应用勾股定理,熟练掌握待定系数法求函数解析式是解题的关键.
二、填空题
9.x≥﹣3
【解析】
【分析】
根据二次根式有意义的条件,根号内的式子必需大于等于0,即可求出答案.
【详解】
解:式子在实数范围内有意义,则3+x≥0,
解得:x≥﹣3.
故答案为:x≥﹣3.
【点睛】
本题主要考查了二次根式有意义,熟练其要求是解决本题的关键.
10.A
解析:
【解析】
【分析】
根据勾股定理求出对角线AC的长,然后利用菱形面积公式计算即可.
【详解】
解:四边形ABCD是菱形,,
,
,
,
,
则S菱形ABCD,
故答案为:.
【点睛】
本题主要考查了菱形的性质,勾股定理,菱形的面积公式等知识点,利用勾股定理求出AC是关键.
11.A
解析:
【解析】
【分析】
直接利用勾股定理求出AB的长进而得出答案.
【详解】
解:如图所示:∵∠ACB=90°,,,
∴AB的长为:=,
故答案为:.
【点睛】
此题主要考查了勾股定理,熟练应用勾股定理是解题关键.
12.B
解析:
【分析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
解:如图,连接AP,
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
设Rt△ABC的斜边BC上的高为h.
∴h=,
又∵PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即等于,
∴AM的最小值是×=.
故答案为:.
【点睛】
本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.
13.3
【分析】
把点(,9)代入函数解析式,即可求解.
【详解】
∵一次函数(为常数)的图象经过点(,9),
∴,解得:b=3,
故答案是:3.
【点睛】
本题主要考查一次函数图象上的点的坐标特征,掌握待定系数法,是解题的关键.
14.D
解析:或或
【分析】
因为点是坐标平面内的任意一点.若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而△ODP是腰长为5的等腰三角形有三种情况,要分类讨论求解即可.
【详解】
解:由题意,若以、、、为顶点的四边形是边长为5的菱形时,始终有△ODP是腰长为5的等腰三角形,而当△ODP是腰长为5的等腰三角形时,有三种情况:
(1)如答图①所示,PD=OD=5,点P在点D的左侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=5-3=2,
∴此时点P坐标为(2,4);
(2)如答图②所示,OP=OD=5.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△POE中,由勾股定理得:OE=,
∴此时点P坐标为(3,4);
(3)如答图③所示,PD=OD=5,点P在点D的右侧.
过点P作PE⊥x轴于点E,则PE=4.
在Rt△PDE中,由勾股定理得:DE=
∴OE=OD+DE=5+3=8,
∴此时点P坐标为(8,4).
综上所述,点P的坐标为:(2,4)或(3,4)或(8,4);
故答案为:(2,4)或(3,4)或(8,4);
【点睛】
本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.
15.【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得
解析:
【分析】
根据图像,结合题意,先求出AD的长,再根据三角形的面积公式求出a,即可求出b的值.
【详解】
解:由函数图像可知:时,点P在AB上,,点P在BC上,时,点P在CD上,
∴,
∵,
∴解得,
又∵,即
∴,
故答案为:.
【点睛】
本题主要考查了动点问题的函数图像,解题的关键在于能够准确从函数图像中获取信息求解.
16.16
【分析】
过点F作FE⊥BC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB=10cm.在 中,由勾股定理,可得OE=6cm,即可求解.
【详解】
解:如图,过点F作FE
解析:16
【分析】
过点F作FE⊥BC于点E,则EF=AB=8cm,AF=BE,根据折叠知识,可得OF=OB=10cm.在 中,由勾股定理,可得OE=6cm,即可求解.
【详解】
解:如图,过点F作FE⊥BC于点E,则EF=AB=8cm,AF=BE,
在长方形ABCD中,CD=AB=8cm,
根据题意得:OF=OB=10cm.
在 中,由勾股定理得:
,
∴AF=BE=OB+OE=16cm.
故答案为:16
【点睛】
本题主要考查了勾股定理,图形的折叠,熟练掌握勾股定理,图形折叠前后,对应线段相等,对应角相等是解题的关键.
三、解答题
17.(1)3;(2)﹣1;(3)2;(4)3-1.
【分析】
(1)先计算二次根式的乘法再算减法;
(2)利用平方差公式计算;
(3)先算乘法和完全平方公式计算,最后算加减;
(4)先化简最简二次根式和
解析:(1)3;(2)﹣1;(3)2;(4)3-1.
【分析】
(1)先计算二次根式的乘法再算减法;
(2)利用平方差公式计算;
(3)先算乘法和完全平方公式计算,最后算加减;
(4)先化简最简二次根式和去绝对值,最后算加减.
【详解】
解:(1)原式==8-5=3;
(2)原式=;
(3)原式=1+2-(1-2+2)=3-3+2=2;
(4)原式==3-1.
【点睛】
本题考查了二次根式的混合运算、平方差公式、完全平方公式以及零次幂,熟练掌握各运算法则是解题的关键.
18.绳索OA的长为14.5尺.
【分析】
设绳索OA的长为x尺,根据题意知,可列出关于 的方程,即可求解.
【详解】
解:由题意可知: 尺,
设绳索OA的长为x尺,根据题意得
,
解得.
答:绳索OA的
解析:绳索OA的长为14.5尺.
【分析】
设绳索OA的长为x尺,根据题意知,可列出关于 的方程,即可求解.
【详解】
解:由题意可知: 尺,
设绳索OA的长为x尺,根据题意得
,
解得.
答:绳索OA的长为14.5尺.
【点睛】
本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.
19.(1)作图见解析,点C的坐标为(-1,1);(2)AC边上的高为.
【解析】
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可.
(2)利用面积法求解即可.
【详解】
解:(1)如图,
解析:(1)作图见解析,点C的坐标为(-1,1);(2)AC边上的高为.
【解析】
【分析】
(1)分别作出A,B,C的对应点A′,B′,C′即可.
(2)利用面积法求解即可.
【详解】
解:(1)如图,△A′B′C′即为所求作.
点C的坐标为(-1,1);
(2)设△ABC边上的高为h,
∵AB==,BC==,AC==,
,
∴,且AB=BC,
∴△ABC是等腰直角三角形,且AC为斜边,
∴××=××h,
∴h=.
即AC边上的高为.
【点睛】
本题考查作图-轴对称变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
20.(1)见解析;(2)证明见解析;探究:菱形
【分析】
(1)根据矩形性质直接根据边角边证明△ABE≌DCF即可;
(2)证明AE∥DF,AE=DF,可得结论;
探究:证明FD=FE,可得结论.
【详
解析:(1)见解析;(2)证明见解析;探究:菱形
【分析】
(1)根据矩形性质直接根据边角边证明△ABE≌DCF即可;
(2)证明AE∥DF,AE=DF,可得结论;
探究:证明FD=FE,可得结论.
【详解】
.证明:(1)∵四边形ABCD为矩形,
∴AB=DC,∠B=∠DCF,
∵BE=CF,
∴△ABE≌DCF;
(2)∵△ABE≌DCF,
∴∠AEB=∠F,AE=DF,
∴AE∥DF,
∴AE=DF,
∴四边形AEFD是平行四边形.
(3)此时四边形AEFD是菱形.
理由:如图1中,连接DE.
∵DE平分∠AEC,
∴∠AED=∠DEF,
∵AD∥EF,
∴∠ADE=∠DEF,
∴∠ADE=∠AED,
∴AD=AE,
∵四边形AEFD是平行四边形,
∴四边形AEFD是菱形.
【点睛】
本题属于四边形综合题,考查了矩形的性质,平行四边形的判定和性质,菱形的判定等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
21.(1)- (2)9
【解析】
【分析】
(1)根据已知的3个等式发现规律:,把n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.
【详解】
解:(1
解析:(1)- (2)9
【解析】
【分析】
(1)根据已知的3个等式发现规律:,把n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.
【详解】
解:(1);
(2)计算:
=
=
=10-1
=9.
22.(1)42;(2)5,24;(3)Q=﹣6t+42,(0≤t≤5)
【分析】
(1)根据图象开始时Q的值即可得出结论;
(2)根据图象,中途Q增大的位置即可得出结论;
(3)根据图象上的两个点,用待
解析:(1)42;(2)5,24;(3)Q=﹣6t+42,(0≤t≤5)
【分析】
(1)根据图象开始时Q的值即可得出结论;
(2)根据图象,中途Q增大的位置即可得出结论;
(3)根据图象上的两个点,用待定系数法即可.
【详解】
解:(1)由图象知,t=0时,Q=42,
∴开始时,汽车的油量a=42升,
故答案为42;
(2)当t=5时,Q的值增大,
∴在行驶5小时时加油,加油量为36﹣12=24升,
故答案为5,24;
(3)加油前,图像上有两点(0,42),(5,12),
设Q与t的关系式为Q=kt+b,
代入(0,42),(5,12),得:
,
解得,
∴Q=﹣6t+42,(0≤t≤5).
【点睛】
本题主要考查一次函数的应用,关键是要会用待定系数法求一次函数的解析式.
23.(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的
解析:(1)见解析;(2);(3)8或或6
【分析】
(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;
(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式;
(3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长.
【详解】
解:(1)证明:如图1,连结,
,,,
,
,
即;
四边形是平行四边形,
,
,
,
,
四边形是菱形
(2)如图2,连结,交于点,作于点,则,
由(1)得,四边形是菱形,
,
,
,,
,
,
,
由,且,得,
解得;
,
,
由,且,得,
点在边上且不与点、重合,
,
关于的函数解析式为,
(3)如图3,,且点在的延长线上,
,,
,
,
,
,
,
,
,
,
,
,
,
,,
,
,
即等腰三角形的底边长为8;
如图4,,作于点,于点,则,
,
,
,
,
,
由(2)得,,
,
,
即等腰三角形的底边长为;
如图5,,点与点重合,连结,
,,,
,
,
即,
等腰三角形的底边长为6.
综上所述,以为腰的等腰三角形的底边长为8或或6,
故答案为:8或或6.
【点睛】
此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解.
24.(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6).
【解析】
【分析】
(1)利用待定系数法解决问题即可.
(2)由翻折不变性可知,OC=CD
解析:(1)A(-8,0)、B(0,6);(2)5;(3)①3个;②(-5,6)或(-11,-6)或(5,6).
【解析】
【分析】
(1)利用待定系数法解决问题即可.
(2)由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.
(3)①根据平行四边形的定义画出图形即可判断.
②利用平行四边形的性质求解即可解决问题.
【详解】
解:(1)对于直线,令x=0,得到y=6,
∴B(0,6),
令y=0,得到x=,
∴A(,0);
(2)∵A(,0),B(0,6),
∴OA=8,OB=6,
∵∠AOB=90°,
∴,
由翻折不变性可知,OC=CD,OB=BD=6,∠ODB=∠BOC=90°,
∴AD=AB-BD=4,设CD=OC=x,
在Rt△ADC中,∵∠ADC=90°,
∴AD2+CD2=AC2,
∴42+x2=(8-x)2,
解得:x=3,
∴OC=3,AC=OAOC=83=5.
(3)①符合条件的点P有3个,如图所示:
②∵A(-8,0),C(-3,0),B(0,6),
当AB为对角线时,,
由平行四边形的性质,得,
∴P1(-5,6);
当AB为边时,,点P在第三象限时,有
点B向下平移6个单位,向左平移3个单位得到点C,
∴点A向下平移6个单位,向左平移3个单位得到点P2,
∴P2(-11,-6);
点P在第二象限时,有
,
∴P3(5,6);
∴点P的坐标为:(-5,6)或(-11,-6)或(5,6).
【点睛】
本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.
25.(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.
【分析】
(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS)
解析:(1)AD=AB+DC;(2)AB=AF+CF,证明详见解析;(3)AB=DF+CF,证明详见解析.
【分析】
(1)结论:AD=AB+DC.延长AE,DC交于点F,证明△ABE≌△FEC(AAS),即可推出AB=CF,再证明DA=DF,即可解决问题.
(2)结论:AB=AF+CF,如图②,延长AE交DF的延长线于点G,证明方法类似(1).
(3)结论;AB=DF+CF.如图③,延长AE交CF的延长线于点G,证明方法类似(1).
【详解】
解:(1)探究问题:结论:AD=AB+DC.
理由:如图①中,延长AE,DC交于点F,
∵AB∥CD,
∴∠BAF=∠F,
在△ABE和△FCE中,
CE=BE,∠BAF=∠F,∠AEB=∠FEC,
∴△ABE≌△FEC(AAS),
∴CF=AB,
∵AE是∠BAD的平分线,
∴∠BAF=∠FAD,
∴∠FAD=∠F,
∴AD=DF,
∵DC+CF=DF,
∴DC+AB=AD.
故答案为AD=AB+DC.
(2)方法迁移:结论:AB=AF+CF.
证明:如图②,延长AE交DF的延长线于点G,
∵E是BC的中点,
∴CE=BE,
∵AB∥DC,
∴∠BAE=∠G.且BE=CE,∠AEB=∠GEC
∴△AEB≌△GEC(AAS)
∴AB=GC
∵AE是∠BAF的平分线
∴∠BAG=∠FAG,
∵∠BAG∠G,
∴∠FAG=∠G,
∴FA=FG,
∵CG=CF+FG,
∴AB=AF+CF.
(3)联想拓展:结论;AB=DF+CF.
证明:如图③,延长AE交CF的延长线于点G,
∵E是BC的中点,
∴CE=BE,
∵AB∥CF,
∴∠BAE=∠G,
在△AEB和△GEC中,
,
∴△AEB≌△GEC,
∴AB=GC,
∵∠EDF=∠BAE,
∴∠FDG=∠G,
∴FD=FG,
∴AB=DF+CF.
【点睛】
本题是四边形的综合问题,考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文