资源描述
人教版初二上学期期末数学综合检测试卷(一)
一、选择题
1、下列四个图形中,是中心对称图形且不是轴对称图形的为( )
A. B. C. D.
2、华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000070米.数据0.00000007用科学记数法表示为( )
A. B. C. D.
3、下列运算正确的是( )
A. B. C. D.
4、要使分式有意义,则x的取值范围是( )
A. B. C. D.
5、下列各式从左到右的变形中,属于分解因式的是( )
A.4x2﹣4x=4x(x﹣1) B.a(a+2)=a2+2a
C.m2+m+3=m(m+1)+3 D.a2+6a+3=(a+3)2﹣6
6、下列各式中,正确的是( )
A. B. C. D.
7、如图,点D、E分别在线段AB、AC上,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD( )
A.∠AEB=∠ADC B.BE=CD C.∠B=∠C D.AD=AE
8、若关于的分式方程有增根,则的值是( )
A.-3 B.0 C.2 D.3
9、在矩形ABCD中,∠CBD=α°,点E为BC边上的动点,连接DE.过点E作EF⊥BD于点F,点G为DE的中点,连接CG,GF,则∠FGC可表示为( )
A.2α° B.(90+α)° C.(180 -α)° D.(180 -2α)°
二、填空题
10、如图,△ABC是等边三角形,D是线段AC上一点(不与点A,C重合),连接BD,点E,F分别在线段BA,BC的延长线上,且DE=DF=BD,则△AED的周长等于( )
A. B.BF C. D.
11、若分式的值为0,则x的值为__________.
12、在平面直角坐标系中,作点A(4,-3)关于x轴的对称点,再向右平移2个单位长度得到点,则点的坐标是__________.
13、已知a+b=5,ab=3,=_____.
14、计算:(﹣0.25)2021×42022=_____.
15、如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是_____.
16、如果x2-mx+4是一个完全平方式,则m的值为________.
17、若,则的值是_________.
18、如图,,垂足为点A,射线,垂足为点B, ,.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着 E点运动而运动,始终保持.若点E的运动时间为,则当 ________ 个秒时,与全等.
三、解答题
19、分解因式:
(1);
(2).
20、解分式方程:
21、如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=DC,BE=CF.求证:∠B=∠C.
22、探究与发现:
探究:我们知道,三角形的一个外角等于与它不相邻的两个内角的和,那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
问题发现:
(1)已知如图1,∠FBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠FBC+ECB的数量关系;
(2)类比探究: 已知如图2,在△ABC中,BP、CP分别平分∠ABC和∠ACB,试探究∠P与∠A的数量关系;
(3)拓展延伸:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,直接写出∠P与∠A+∠B的数量关系.
23、第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地5G下载速度是每秒多少兆?
24、乘法公式的探究及应用.
数学活动课上,刘老师准备了若干个如图的三种纸片,种纸片边长为的正方形,种纸片是边长为的正方形,种纸片长为、宽为的长方形并用种纸片一张,种纸片一张,种纸片两张拼成如图的大正方形.
(1)观察图,请写出下列三个代数式:,,之间的等量关系____;
(2)若要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片_____张.
(3)根据(1)题中的等量关系,解决如下问题:
①已知:,,求的值:
②已知.求的值.
25、如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称.
(1)求△ABC的面积;
(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;
(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.
一、选择题
1、D
【解析】D
【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,据此逐项判断即可.
【详解】解:A、是中心对称图形,也是轴对称图形,故此选项不符合题意;
B、是中心对称图形,也是轴对称图形,故此选项不符合题意;
C、是中心对称图形,也是轴对称图形,故此选项不符合题意;
D、是中心对称图形,不是轴对称图形,故此选项符合题意,
故选:D.
【点睛】本题考查中心对称图形和轴对称图形,理解定义,找准对称中心或对称轴是解答的关键.
2、C
【解析】C
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】解:;
故选:C.
【点睛】本题考查科学记数法;熟练掌握科学记数法中与的确定方法是解题的关键.
3、D
【解析】D
【分析】直接利用幂的乘方和积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【详解】解:A、,故此选项错误;
B、,故此选项错误;
C、,故此选项错误;
D、,故此选项正确;
故选:D.
【点睛】此题主要考查了幂的乘方和积的乘方运算法则、同底数幂的乘除法,正确掌握相关运算法则是解题关键.
4、C
【解析】C
【分析】根据分式有意义的条件可进行求解.
【详解】解:由题意得:,
∴;
故选C.
【点睛】本题主要考查分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.
5、A
【解析】A
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的概念判断即可.
【详解】解:A选项,符合因式分解的概念,符合题意;
B选项,属于整式乘法,不符合题意;
C选项,等号的右边不是几个整式的积的形式,不符合题意;
D选项,等号的右边不是几个整式的积的形式,不符合题意;
故选:A.
【点睛】本题考查了因式分解的定义和因式分解的方法,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
6、D
【解析】D
【分析】根据分式的性质,即可一一判定.
【详解】解:A.,故该选项错误;
B.当时,,当,此式无意义,故该选项错误;
C. ,故该选项错误;
D. ,故该选项正确;
故选:D.
【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数或(整式),分式的值不变,熟练掌握和运用分式的性质是解决本题的关键.
7、B
【解析】B
【分析】根据全等三角形的判定条件逐一判断即可.
【详解】解:由题意得AB=AC,∠A=∠A
添加∠AEB=∠ADC,可以利用AAS证明两个三角形全等,故A不符合题意;
添加BE=CD,不能利用SSA证明两个三角形全等,故B符合题意;
添加∠B=∠C,可以利用ASA证明两个三角形全等,故C不符合题意;
添加AD=AE,可以利用SAS证明两个三角形全等,故D不符合题意;
故选B.
【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
8、D
【解析】D
【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.
【详解】解:去分母得3x-(x-2)=m+3,
当增根为x=2时,6=m+3,
∴m=2、
故选:D.
【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
9、D
【解析】D
【分析】首先利用已知条件和矩形的性质证明△EFD和△ECD都是直角三角形,然后利用直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质得到∠GFD=∠GDF,∠GDC=∠GCD,最后利用三角形的外角和内角的关系即可求解.
【详解】解:如图,
∵四边形ABCD为矩形,
∴∠BCD=∠ABC=90°,
∵EF⊥BD于点F,
∴∠EFD=90°,
∴△EFD和△ECD都是直角三角形,
∵G为DE的中点,
∴GE=GF=GD=GC,
∴∠GFD=∠GDF,∠GDC=∠GCD,
∴∠FGC=∠FGE+∠CGE=∠GFD+∠GDF+∠GDC+∠GCD=2(∠GDF+∠GDC)=2∠CDF,
∵∠CBD=α°,
∴∠CDF=90°﹣α°,
∴∠FGC=2∠CDF=2(90°﹣α°)=180°﹣2α°=(180﹣2α)°.
故选:D.
【点睛】本题主要考查了矩形的性质、直角三角形斜边上的中线等于斜边的一半,同时也利用了三角形的外角和内角的关系,有一定的综合性.
二、填空题
10、D
【解析】D
【分析】利用等边三角形的性质和三角形外角的性质证明∠F=∠ADE,再利用AAS证明△ADE≌△CFD,得AE=CD,从而解决问题.
【详解】解:∵DE=DF=BD,
∴∠DBE=∠BED,∠DBF=∠DFB,
∵△ABC是等边三角形,
∴∠ABC=∠BAC=∠ACB=60°,
∴∠E+∠F=60°,∠EAD=∠DCF,
∵∠E+∠ADE=60°,
∴∠F=∠ADE,
在△ADE和△CFD中,
∵
∴△ADE≌△CFD(AAS),
∴AE=CD,
∴△AED的周长=AE+AD+DE=AC+DE,
∵DE=BD,
∴△AED的周长为AC+BD,
故选:D.
【点睛】本题主要考查了等边三角形的性质,全等三角形的判定与性质等知识,证明△ADE≌△CFD是解题的关键.
11、3
【分析】根据分式的值为0时分母≠0,且分子=0两个条件求出x的值即可.
【详解】由x2-9=0,得
x=±2、
又∵x+3≠0,
∴x≠-3,
因此x=2、
故答案为2、
【点睛】本题考查了分式值为0时求字母的值.分式值为0时分子=0,分母≠0,两个条件缺一不可,掌握以上知识是解题的关键.
12、A
【解析】
【分析】根据点关于x轴对称的坐标规律“横坐标不变,纵坐标互为相反数”得到,再根据点平移坐标规律“右加左减,上加下减”得到即可.
【详解】解:点A(4,-3)关于x轴的对称点的坐标为(4,3),再将向右平移2个单位长度得到点的坐标为(6,3),
故答案为:(6,3).
【点睛】本题考查坐标与图形变换-轴对称和平移,熟练掌握点关于轴对称和平移的坐标变换规律是解答的关键.
13、.
【分析】将a+b=5、ab=3代入原式=,计算可得.
【详解】当a+b=5、ab=3时,
原式=
=
=
=.
故答案为.
【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减运算法则和完全平方公式.
14、﹣4
【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.
【详解】解:
.
故答案为:.
【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.
15、4
【分析】根据等边三角形的性质及轴对称的性质得到∠ABC=∠B=60°,B=AB=BC=2,证明△CBD≌△BD,得到CD=D,推出当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=
【解析】4
【分析】根据等边三角形的性质及轴对称的性质得到∠ABC=∠B=60°,B=AB=BC=2,证明△CBD≌△BD,得到CD=D,推出当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=3、
【详解】解:如图,连接D,
∵正△ABC的边长为2,△ABC与△A′BC′关于直线l对称,
∴∠ABC=∠B=60°,B=AB=BC=2,
∴∠CB=60°,
∴∠CB=∠B,
∵BD=BD,
∴△CBD≌△BD,
∴CD=D,
∴AD+CD=D+CD,
∴当A、D、三点共线时,AD+CD最小,此时AD+CD=B+AB=4,
故答案为:3、
.
【点睛】此题考查了等边三角形的性质,轴对称的性质,全等三角形的判定及性质,最短路径问题,正确掌握全等三角形的判定是解题的关键.
16、±4
【分析】利用完全平方公式的结构特征判断即可确定出m的值.
【详解】解:∵x2+mx+4是一个完全平方式,
∴m=±4,
故答案为:±3、
【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解
【解析】±4
【分析】利用完全平方公式的结构特征判断即可确定出m的值.
【详解】解:∵x2+mx+4是一个完全平方式,
∴m=±4,
故答案为:±3、
【点睛】本题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
17、14
【分析】根据即可求得其值.
【详解】解:,
故答案为:13、
【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.
【解析】14
【分析】根据即可求得其值.
【详解】解:,
故答案为:13、
【点睛】本题考查了代数式求值问题,熟练掌握和运用代数式求值的方法是解决本题的关键.
18、2或6或8
【分析】分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AB=BE进行计算即可.
【详解】解:①当E在线段AB上,AC=BE时,
AC=6,
B
【解析】2或6或8
【分析】分两种情况:①当E在线段AB上时,②当E在BN上,再分别分成两种情况AC=BE,AB=BE进行计算即可.
【详解】解:①当E在线段AB上,AC=BE时,
AC=6,
BE=6,
AE=12-6=6,
点 E 的运动时间为 (秒).
②当E在BN上,AC=BE时,
AC=6,
BE=6,
AE=12+6=17、
点 E 的运动时间为 (秒).
③当E在BN上,AB=BE时,
AE=12+12=24.
点E的运动时间为 (秒)
④当E在线段AB上,AB=BE时,这时E在A点未动,因此时间为秒不符合题意.
故答案为:2或6或7、
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
三、解答题
19、(1)
(2)
【分析】(1)先提取公因式3x,再利用平方差公式因式分解即可;
(2)先提取公因式3y,再利用完全平方公式因式分解即可;
(1)
解:原式=
=;
(2)
解:原式=
=.
【点睛】
【解析】(1)
(2)
【分析】(1)先提取公因式3x,再利用平方差公式因式分解即可;
(2)先提取公因式3y,再利用完全平方公式因式分解即可;
(1)
解:原式=
=;
(2)
解:原式=
=.
【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
20、分式方程无解
【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.
【详解】去分母得:y﹣2=2y﹣6+1
移项合并得:y=2、
经检验:y=3是增
【解析】分式方程无解
【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.
【详解】去分母得:y﹣2=2y﹣6+1
移项合并得:y=2、
经检验:y=3是增根,分式方程无解.
【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
21、证明见解析.
【分析】由,得,即可用HL证明,即可得证.
【详解】∵,
∴,即,
在和中,
,
∴(HL),
∴∠B=∠C.
【点睛】本题考查了三角形全等的判定及性质,解题的关键是掌握三角形全等的判
【解析】证明见解析.
【分析】由,得,即可用HL证明,即可得证.
【详解】∵,
∴,即,
在和中,
,
∴(HL),
∴∠B=∠C.
【点睛】本题考查了三角形全等的判定及性质,解题的关键是掌握三角形全等的判定定理.
22、(1)∠FBC+∠ECB=180°+∠A
(2)∠P=90°+ ∠A
(3)∠P= (∠A+∠B).
【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACB,∠E
【解析】(1)∠FBC+∠ECB=180°+∠A
(2)∠P=90°+ ∠A
(3)∠P= (∠A+∠B).
【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACB,∠ECB=∠A+∠ABC,再根据三角形内角和整理即可得解;
(2)根据角平分线的定义可得∠PBC=∠ABC,∠PCB=∠ACB,然后根据三角形内角和列式整理即可得解;
(3)根据四边形的内角和表示出∠ADC+∠BCD,然后同理探究二解答即可.
(1)
解:∵∠FBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
∴∠FBC+∠ECB=∠A+∠ACB+∠A+∠ABC=180°+∠A.
(2)
解:∵BP平分∠ABC,
∴∠PBC= ∠ABP= ∠ABC.
同理,∠PCB= ∠ACP=∠ACB.
∴∠P =180°-∠PBC-∠PCB
=180°-(∠ACB+∠ACB)
=180°- (180°-∠A)
=90°+ ∠A
(3)
解:如图:延长DA、CB交于点O,
由(2)中结论知,∠P=90°+ ∠O,
由(1)中结论知,∠DAB+∠CBA=180°+∠O,
∴∠P=90°+ (∠DAB+∠CBA-180°)= (∠DAB+∠CBA).
【点睛】本题考查了三角形的内角和定理,角平分线的定义及三角形外角的性质,熟记性质并读懂题目信息是解题的关键.
23、60兆
【分析】设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据“小明比小强所用的时间快140秒”列出方程求解即可.
【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的
【解析】60兆
【分析】设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据“小明比小强所用的时间快140秒”列出方程求解即可.
【详解】解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆
由题意得:
解得:x=4,
经检验:x=4是原分式方程的解,且符合题意,
15×4=60,
答:该地5G的下载速度是每秒60兆.
【点睛】本题主要考查了分式方程的应用,解题关键是正确理解题意,找出题目中的等量关系,设出未知数列出方程.
24、(1);(2)3;(3)①11;②1
【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形=(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b的
【解析】(1);(2)3;(3)①11;②1
【分析】(1)方法1:图2是边长为(a+b)的正方形,利用正方形的面积公式可得出S正方形=(a+b)2;方法2:图2也可看成1个边长为a的正方形、1个边长为b的正方形以及2个长为b宽为a的长方形的组合体,根据正方形及长方形的面积公式可得出S正方形=a2+2ab+b2;由图2中的图形面积不变,可得出(a+b)2=a2+2ab+b2;
(2)把括号打开,根据各项的系数就可判断卡片的张数;
(3)①由a+b=6可得出(a+b)2=36,将其和a2+b2=14代入(a+b)2=a2+2ab+b2中即可求出ab的值;
②设x﹣2019=a,则x﹣2018=a+1,x﹣2020=a﹣1,再根据完全平方公式求解即可.
【详解】解:(1)方法:图是边长为的正方形,
;
方法:图可看成个边长为的正方形、个边长为的正方形以及个长为宽为的长方形的组合体,
.
.
故答案为:;
(2)∵,A卡片的面积为a2,B卡片的面积为b2,C卡片的面积为ab,根据各项系数可得,要拼出一个面积为的矩形,则需要号卡片张,号卡片张,号卡片张.
故答案为:.
(3)①,
,即,
又,
.
②设,则,,
,
,
,
,
,
,即.
【点睛】本题考查了完全平方公式的几何背景、正方形的面积以及长方形的面积,解题的关键是:利用长方形、正方形的面积公式,找出结论;根据面积不变,找出(a+b)2=a2+2ab+b1、
25、(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点F,
【解析】(1)36;(2)证明见解析;(3)3,理由见解析.
【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;
(2) 过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°.
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,
即可得解.
【详解】解:(1)由已知条件得:
AC=12,OB=6
∴
(2)过E作EF⊥x轴于点F,延长EA交y轴于点H,
∵△BDE是等腰直角三角形,
∴DE=DB, ∠BDE=90°,
∴
∵
∴
∴
∵EF轴,
∴
∴DF=BO=AO,EF=OD
∴AF=EF
∴
∴∠BAE=90°
(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,
∵,OA=6,
∴OM+ON=3
【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.
展开阅读全文