资源描述
人教版部编版八年级下册数学期末试卷培优测试卷
一、选择题
1.如果式子有意义,那么的取值范围是( )
A. B. C. D.
2.若一个三角形的三边长为5,12,13,则最长边上的高为( )
A. B. C. D.以上都不对
3.四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的为( )
A.,, B.,, C.,, D.,,
4.某校劳动实践活动中,甲,乙两块试验田3次果蔬平均产量都是,方差分别是,,则这两块试验田3次果蔬产量较稳定的是( )
A.甲 B.乙 C.甲和乙一样稳定 D.不能确定
5.若三角形的三边长分别是下列各组数,则能构成直角三角形的是( )
A.4,5,6 B.1,2, C.6,8,11 D.5,12,14
6.如图,菱形纸片ABCD的边长为a,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE=2BE,则六边形AEFCHG面积的是( )
A.a2 B.a2 C.a2 D.a2
7.如图,在中,,,,则的长是( )
A. B. C. D.
8.甲乙两人在同一条笔直的公路上步行从A地去往B地,已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离(千米)与甲步行的时间(小时)的函数关系图像如图所示,下列说法:
①乙的速度为千米/时;
②乙到终点时甲、乙相距千米;
③当乙追上甲时,两人距地千米;
④两地距离为千米.
其中错误的个数为( )
A.1个 B.2个 C.3个 D.4个
二、填空题
9.要使代数式有意义,则x的取值范围是___________.
10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.
11.由四个全等的直角三角形组成如图所示的“赵爽弦图”,若直角三角形两直角边边长的和为3,面积为1,则图中阴影部分的面积为____________ .
12.如图,在矩形ABCD中,点E是对角线AC上一点,CB=CE,∠ACB=30°,则∠ABE=_____°.
13.若函数y=kx+3的图象经过点(3,6),则k=_____.
14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=5cm,BC=12cm,则△AEF的周长为_______________.
15.如图,点A是一次函数图象上的动点,作AC⊥x轴与C,交一次函数的图象于B. 设点A的横坐标为,当____________时,AB=1.
16.如图是一次函数的图象,则关于x的方程:的解是___________.
三、解答题
17.计算题
(1)+2+3;
(2)()×;
(3)(1﹣)0;
(4)(+1)(﹣1)﹣.
18.如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?
19.在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才能叫“整数三角形”.甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到了周长为24的“整数三角形”.丙同学受到甲、乙两同学的启发找到了两个不同的等腰“整数三角形”.请完成:
(1)以点A为一个顶点,在图2中作出乙同学找到的周长为24的“整数三角形”,并在每边周边标注其边长;
(2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长;
(3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由.
20.如图,已知点是中边的中点,连接并延长交的延长线于点,连接,,.
(1)求证:四边形为矩形;
(2)若是等边三角形,且边长为6,求四边形的面积.
21.小明在解决问题:已知a=,求2a2-8a+1的值,他是这样分析与解答的:
因为a===2-,
所以a-2=-.
所以(a-2)2=3,即a2-4a+4=3.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)计算: = - .
(2)计算:+…+;
(3)若a=,求4a2-8a+1的值.
22.一辆汽车油箱内有油a升,从某地出发,每行驶1小时耗油6升,若设剩余油量为Q升,行驶时间为t小时,根据以上信息回答下列问题:
(1)开始时,汽车的油量a= 升;
(2)在行驶了 小时汽车加油,加了 升;
(3)根据图象求加油前Q与t之间的关系式,并写出t的取值范围.
23.如图1,在中,为的中点,连结.过点作射线为射线上一动点.
(1)求的长和的面积;
(2)如图2,连结,在点的运动过程中,若为等腰三角形,求所有满足条件的的长;
(3)如图3,连结交于点,连结,作点关于的对称点,当点恰好落在的边上时,连结,请直接写出的面积.
24.如图,平面直角坐标系中,O为原点,直线y=x+1分别交x轴、y轴于点A、B,直线y=﹣x+5分别交x轴、y轴于点C、D,直线AB、CD相交于点E.
(1)请直接写出A、D的坐标;
(2)P为直线CD上方直线AE上一点,横坐标为m,线段PE长度为d,请求出d与m的关系式;
(3)在(2)的条件下,连接PC、PD,若∠CPD=135°,求点P的坐标.
25.已知中,.点从点出发沿线段移动,同时点从点出发沿线段的延长线移动,点、移动的速度相同,与直线相交于点.
(1)如图①,当点为的中点时,求的长;
(2)如图②,过点作直线的垂线,垂足为,当点、在移动的过程中,设,是否为常数?若是请求出的值,若不是请说明理由.
(3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明.
26.在正方形ABCD中,AB=4,点E是边AD上一动点,以CE为边,在CE的右侧作正方形CEFG,连结BF.
(1)如图1,当点E与点A重合时,则BF的长为 .
(2)如图2,当AE=1时,求点F到AD的距离和BF的长.
(3)当BF最短时,请直接写出此时AE的长.
【参考答案】
一、选择题
1.A
解析:A
【分析】
二次根式有意义,则,据此解题.
【详解】
解:二次根式有意义,则,
,
故选A.
【点睛】
本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.
2.C
解析:C
【分析】
首先根据三角形的三边长证明三角形是直角三角形,再根据直角三角形的面积公式计算出斜边上的高即可.
【详解】
解:∵,
∴该三角形是直角三角形,最长边是斜边13,
设该边上的高为h,由三角形的面积得:
解得:h
故选:C.
【点睛】
此题主要考查了勾股定理的逆定理,以及直角三角形的面积计算,关键是熟练掌握勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形就是直角三角形.
3.D
解析:D
【解析】
【分析】
两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.
【详解】
A、第四个角是76°,有一组对角不相等,不是平行四边形;
B、第四个角是72°,两组对角都不相等,不是平行四边形;
C、第四个角是88°,而C中相等的两个角不是对角,不是平行四边形;
D、第四个角是72°,满足两组对角分别相等,因而是平行四边形.
故选:D.
【点睛】
本题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角的对应的位置关系,并不是有两组角相等的四边形就是平行四边形.
4.A
解析:A
【解析】
【分析】
根据两组数据的平均数相同,则方差小的更稳定即可求解.
【详解】
甲,乙两块试验田3次果蔬平均产量都是,方差分别是,,
这两块试验田3次果蔬产量较稳定的是:甲.
故选A
【点睛】
本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.
5.B
解析:B
【分析】
根据勾股定理逆定理:三角形三边长a、b、c若满足,则该三角形为直角三角形,将各个选项逐一代数计算即可得出答案.
【详解】
解:A选项:∵,∴4、5、6三边长无法组成直角三角形,故该选项错误;
B选项:∵,∴1、2、三边长可以组成直角三角形,故该选项正确;
C选项:∵,∴6、8、11三边长无法组成直角三角形,故该选项错误;
D选项:∵,∴5、12、14三边长无法组成直角三角形,故该选项错误,
故选:B.
【点睛】
本题主要考察了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
6.C
解析:C
【解析】
【分析】
由菱形的性质可得AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,由折叠的性质可得EF⊥BP,∠BEF=∠PEF,BE=EP=a,可证△BEF是等边三角形,△GDH是等边三角形,四边形AEPG是平行四边形,可得AG=EP=a,即可求DG的长,由面积和差可求解.
【详解】
解:如图,连接AC,
∵四边形ABCD是菱形,∠ABC=60°,AE=2BE,
∴AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,
∴AC=AB=BC=a,BD=a,
∵将菱形ABCD沿EF,GH折叠,
∴EF⊥BP,∠BEF=∠PEF,BE=EP=a,
∴EF∥AC,
∴,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°=∠PEF,
∴∠BEP=∠BAD=120°,
∴EH∥AD,
同理可得:△GDH是等边三角形,GP∥AB,
∴四边形AEPG是平行四边形,
∴AG=EP=a,
∴DG=a,
∴六边形AEFCHG面积=S菱形ABCD﹣S△BEF﹣S△GDH=•a•a﹣×(a)2﹣×(a)2=a2,
故选:C.
【点睛】
本题考查了翻折变换,菱形的性质,平行四边形的判定和性质,等边三角形的性质判定等知识,求出DG的长是本题的关键.
7.B
解析:B
【解析】
【分析】
根据所对的直角边等于斜边的一半,然后根据勾股定理求解即可.
【详解】
解:∵在中,,,
∴,
根据勾股定理得:,
即,
解得:,
故选:B.
【点睛】
本题考查了直角三角形角的性质以及勾股定理,熟知直角三角形所对的直角边是斜边的一半是解题的关键.
8.A
解析:A
【分析】
①由函数图象数据可以求出甲的速度,再由追击问题的数量关系建立方程就可以求出乙的速度;
②由函数图象的数据由乙到达终点时走的路程-甲走的路程就可以求出结论;
③乙或甲行驶的路程就是乙追上甲时,两人距A地的距离;
④求出乙到达终点的路程就是A,B两地距离.
【详解】
解:①由题意,得
甲的速度为:12÷4=3千米/时;
设乙的速度为a千米/时,由题意,得
(7-4)a=3×7,
解得:a=7.
即乙的速度为7千米/时,
故①正确;
②乙到终点时甲、乙相距的距离为:
(9-4)×7-9×3=8千米,
故②正确;
③当乙追上甲时,两人距A地距离为:
7×3=21千米.
故③正确;
④A,B两地距离为:
7×(9-4)=35千米,
故④错误.
综上所述:错误的只有④.
故选:A.
【点睛】
本题考查了从函数图象获取信息,行程问题的追击题型的等量关系的运用,一元一次方程的运用,解答时分析清楚函数图象的数据之间的关系是关键.
二、填空题
9.x≥﹣1且x≠0
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.
【详解】
根据题意,得
,
解得x≥﹣1且x≠0.
故答案为:x≥﹣1且x≠0.
【点睛】
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.理解分式与二次根式的意义是关键.
10.24
【解析】
【分析】
根据菱形的面积=对角线积的一半,可求菱形的面积.
【详解】
四边形是菱形,
.
故答案为:.
【点睛】
本题考查菱形的性质,解题的关键是熟练运用菱形的性质.
11.1
【解析】
【分析】
设直角三角形的一条直角边长为,则另一条直角边长为,由题意列方程,求出两直角边长,根据勾股定理求出斜边长。由阴影部分的面积=大正方形的面积−4个小直角三角形的面积,代入数值计算即可.
【详解】
解:设直角三角形的一条直角边长为,则另一条直角边长为,
则由题意可得,,
整理可得,,
解可得或,即直角三角形的两直角边长分别为2,1,
∴直角三角形的斜边长为,
∴.
故答案为:1.
【点睛】
本题考查勾股定理,一元二次方程的应用,解题的关键是利用勾股定理求出直角三角形的斜边长.
12.E
解析:15
【分析】
利用等腰三角形的的性质求得∠EBC的度数,再由矩形的性质可得.
【详解】
解:∵∠ACB=30°,CB=CE,
∴∠EBC=(180°﹣∠ECB)=(180°﹣30°)=75°,
∵矩形ABCD,
∴∠ABC=90°,
∴∠ABE=90°﹣∠EBC=15°,
故答案为:15°.
【点睛】
本题考查了矩形的性质和等要三角形的性质,解决这类问题关键是熟练掌握矩形的性质.
13.1
【解析】
∵函数y=kx+3的图象经过点(3,6),
∴,解得:k=1.
故答案为:1.
14.A
解析:5cm.
【详解】
试题分析:在Rt△ABC中,
∵AB=5cm,BC=12cm,
∴AC=13cm,
∵点E、F分别是AO、AD的中点,
∴EF是△AOD的中位线,
EF=OD=BD=AC=3.25cm,
AF=AD=BC=6cm,
AE=AO=AC=3.25cm,
∴△AEF的周长=AE+AF+EF=3.25+6+3.25=12.5(cm).
故答案是12.5cm.
考点:1.三角形中位线定理2.矩形的性质.
15.或
【分析】
分别用m表示出点A和点B的纵坐标,用点A的纵坐标减去点B的纵坐标或用点B的纵坐标减去点A的纵坐标得到以m为未知数的方程,求解即可.
【详解】
解:∵点A是一次函数图象上的动点,且点A的
解析:或
【分析】
分别用m表示出点A和点B的纵坐标,用点A的纵坐标减去点B的纵坐标或用点B的纵坐标减去点A的纵坐标得到以m为未知数的方程,求解即可.
【详解】
解:∵点A是一次函数图象上的动点,且点A的横坐标为,
∴
∵AC⊥x轴与C,
∴
∴
∵
∴
解得,或
故答案为或
【点睛】
本题考查了一次函数图象上点的坐标特征,根据A点横坐标和点的坐标特征求得A、B点纵坐标是解题的关键.
16.【分析】
一次函数y=kx+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.
【详解】
解:∵一次函数y=ax+b的图象与x轴相交于点(-2,0),
∴关于x的方程kx+b=0的解是x=-2
解析:
【分析】
一次函数y=kx+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.
【详解】
解:∵一次函数y=ax+b的图象与x轴相交于点(-2,0),
∴关于x的方程kx+b=0的解是x=-2.
故答案为x=-2.
【点睛】
本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
三、解答题
17.(1);(2);(3);(4)
【分析】
(1)根据立方根以及二次根式的加减运算求解即可;
(2)根据二次根式的四则运算求解即可;
(3)根据二次根式的除法以及零指数幂的运算求解即可;
(4)根据平
解析:(1);(2);(3);(4)
【分析】
(1)根据立方根以及二次根式的加减运算求解即可;
(2)根据二次根式的四则运算求解即可;
(3)根据二次根式的除法以及零指数幂的运算求解即可;
(4)根据平方差公式以及二次根式的加减运算,求解即可.
【详解】
解:(1);
(2);
(3);
(4);
【点睛】
此题考查了二次根式的四则运算,涉及了零指数幂、立方根以及平方差公式,解题的关键是熟练掌握二次根式的有关运算.
18.6
【分析】
先根据勾股定理求得,进而求得,根据勾股定理即可求得范围.
【详解】
由题意可知,
则,
即,
解得,
若下次大风将旗杆从D处吹断,如图,
,
BD,
.
则距离旗杆底部周围6米范围内
解析:6
【分析】
先根据勾股定理求得,进而求得,根据勾股定理即可求得范围.
【详解】
由题意可知,
则,
即,
解得,
若下次大风将旗杆从D处吹断,如图,
,
BD,
.
则距离旗杆底部周围6米范围内有被砸伤的危险.
【点睛】
本题考查了勾股定理的应用,掌握勾股定理是解题的关键.
19.(1)见解析;(2)见解析;(3)不能,理由见解析;
【解析】
【分析】
(1)根据勾股定理以及题目给的数据作出边长分别为的“整数三角形”;
(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以
解析:(1)见解析;(2)见解析;(3)不能,理由见解析;
【解析】
【分析】
(1)根据勾股定理以及题目给的数据作出边长分别为的“整数三角形”;
(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为的等腰三角形;
(3)根据题意先求得等边三角形的面积,比较面积和边长的关系即可得出不能找到等边“整数三角形”.
【详解】
(1)如图1,以为顶点,周长为的直角“整数三角形”的边长为
以为顶点,周长为的直角“整数三角形”的边长为
如图:
(2)如图,根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为的等腰三角形
(3)不存在,理由如下:
如图,是等边三角形,是三角形边上的高,设(为正整数)
则
是整数,则是无理数,
不存在边长和面积都是整数的等边三角形
故找不到等边“整数三角形”.
【点睛】
本题考查了勾股定理的应用,等边三角形的性质,熟练利用勾股定理找到勾股数是解题的关键.
20.(1)见解析;(2)四边形的面积.
【分析】
(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;
(2)先求解,,再利用勾股定理求解,从而可得答案.
【详解】
(1)证明
解析:(1)见解析;(2)四边形的面积.
【分析】
(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;
(2)先求解,,再利用勾股定理求解,从而可得答案.
【详解】
(1)证明:四边形是平行四边形,
,,
,
点是中边的中点,
,
,
,
,
四边形是平行四边形,
又,
平行四边形为矩形;
(2)解:由(1)得:四边形为矩形,
,
是等边三角形,
,,
,
四边形的面积.
【点睛】
本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.
21.(1) ,1;(2) 9;(3) 5
【解析】
【分析】
(1);
(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求
解析:(1) ,1;(2) 9;(3) 5
【解析】
【分析】
(1);
(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;
(3)首先化简,然后把所求的式子化成代入求解即可.
【详解】
(1)计算: ;
(2)原式;
(3),
则原式,
当时,原式.
【点睛】
本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.
22.(1)42;(2)5,24;(3)Q=﹣6t+42,(0≤t≤5)
【分析】
(1)根据图象开始时Q的值即可得出结论;
(2)根据图象,中途Q增大的位置即可得出结论;
(3)根据图象上的两个点,用待
解析:(1)42;(2)5,24;(3)Q=﹣6t+42,(0≤t≤5)
【分析】
(1)根据图象开始时Q的值即可得出结论;
(2)根据图象,中途Q增大的位置即可得出结论;
(3)根据图象上的两个点,用待定系数法即可.
【详解】
解:(1)由图象知,t=0时,Q=42,
∴开始时,汽车的油量a=42升,
故答案为42;
(2)当t=5时,Q的值增大,
∴在行驶5小时时加油,加油量为36﹣12=24升,
故答案为5,24;
(3)加油前,图像上有两点(0,42),(5,12),
设Q与t的关系式为Q=kt+b,
代入(0,42),(5,12),得:
,
解得,
∴Q=﹣6t+42,(0≤t≤5).
【点睛】
本题主要考查一次函数的应用,关键是要会用待定系数法求一次函数的解析式.
23.(1)20,150;(2)7或;(3)或42.
【分析】
(1)根据等腰三角形的性质可得BD=AB=15,CD⊥AB,根据勾股定理即可求得的长,从而可得的面积;
(2)分三种情况进行讨论;当CD=C
解析:(1)20,150;(2)7或;(3)或42.
【分析】
(1)根据等腰三角形的性质可得BD=AB=15,CD⊥AB,根据勾股定理即可求得的长,从而可得的面积;
(2)分三种情况进行讨论;当CD=CP时,作CE⊥AP于E,根据S△ABC=ABCD=BCCE可得CE的长,CE>CP,而根据直角三角形斜边大于直角边可得该情况不成立;当CD=DP时,作DF⊥AP于F,延长FD交BC于G,根据全等三角形的判定可得△AFD≌△BGD,从而得到DF=DG,根据S△CDB=CDBD=DGBC,可得DF=DG=12,根据勾股定理可得AF和PF的长,即可得到AP的长;当PD=PC时,作CE⊥AP于E,作DF⊥AP于F,延长FD交BC于G,设AP=x,可得PE=x-7,根据勾股定理可得,,列式即可求得AP的值.
(3)分三种情况进行讨论:①当A´落在CD上时,作GE⊥CD于点E,根据等腰三角形的性质可得CD⊥AB,可得sin∠DAC=,cos∠DAC=,根据题意可知DG是AA´的垂直平分线,从而得到△ADG≌△A´DG(SAS),A´C=5,即可得到sin∠GA´E= sin∠GAE=,cos∠GA´E=cos∠GAE=,设A´G=x,则CG=25-x,GE=x,A´E=x,可得CE=x+5,利用勾股定理可得GE的长,根据S△A´CG=A´CEG即可得解;②当A´落在BC上时,作GE⊥BC于点E,A´A与DG的交点为F,可得DF为中位线,所以DF∥BA´,且DF=BA´,根据等腰三角形性质及中位线性质可得sin∠ABA´=,cos∠ABA´=,从而求得BA´的长,BA´的长,根据矩形的判定可得四边形FA´EG为矩形,从而得到GE的长,根据S△A´CG=A´CEG即可得解;③当A´落在BD上时,会得到A´与B点重合,所以该情况不存在.
【详解】
解:(1)∵,,D为的中点,
∴BD=AB=15,CD⊥AB,
∴∠CDB=90°,
∴CD=,
∴S△ACD=CDAD=×20×15=150;
(2)当CD=CP时,如图,作CE⊥AP于E,
∴S△ABC=ABCD=BCCE,
∴×30×20=×25CE,
解得 CE=24,
∵CE>CD,
即CE>CP,
∴CD=CP不成立,
当CD=DP时,作DF⊥AP于F,延长FD交BC于G,
∵AF∥BC,
∴∠FAD=∠B,
∵∠AFD=∠BGD=90°,AD=BD,
∴△AFD≌△BGD(AAS),
∴DF=DG,
∵S△CDB=CDBD=DGBC,
∴×20×15=×25DG
∴DF=DG=12,
∴AF=,
在Rt△DFP中,PF=,
∴AP=PF-AF=16-9=7,
当PD=PC时,作CE⊥AP于E,作DF⊥AP于F,延长FD交BC于G,
由上述过程可得 AF=9,
∴CG=BC-BG=25-9=16,
设AP=x,
∴PE=PF-FE=AF+AP-FE=9+x-16=x-7,
当PD=PC时,在Rt△PDF中,
,
在Rt△PCE中,,
∴=,
解得x=,
∴AP=,
综上所述,AP=7或.
(3)①当A´落在CD上时,作GE⊥CD于点E,
则S△A´CG=A´CEG,
∵AC=BC,D为AB中点,
∴CD⊥AB,
∵AC=BC=25,AB=30,
∴BD=AD=15,CD=20,
sin∠DAC=,cos∠DAC=,
由题知A,A´关于DG对称,
∴DG是AA´的垂直平分线,
∵DG=DG,∠ADG=∠A´DG,AD=A´D=15,
∴△ADG≌△A´DG(SAS),A´C=5,
∴sin∠GA´E= sin∠GAE=,cos∠GA´E=cos∠GAE=,
设A´G=x,则CG=25-x,
∴GE=x,A´E=x,
∴CE=x+5,
∵△CGE为直角三角形,
∴,
解得x=,
∴GE=,
∴S△A´CG=A´CEG=×5×=;
②当A´落在BC上时,作GE⊥BC于点E,A´A与DG的交点为F,
则S△A´CG=A´CEG,
∵A,A´关于DG对称,
∴点F为AA´的中点,
∵D为AB的中点,
则在△ABA´中,DF为中位线,
∴DF∥BA´,且DF=BA´,
∵∠AFD=90°,
∴∠AA´B=90°,
∵CD=20,BC=25,AB=30
∴sin∠ABA´=,cos∠ABA´=,
∴BA´=30×=24,
∴A´C=25-18=7,
∵AA´⊥BC,GE⊥BC,
∴GE∥AA´,
∵DF∥BA´,
∴FG∥A´E,
∵∠AA´C=90°,
∴四边形FA´EG为矩形,
∴GE=FA´=AA´=×24=12,
∴S△A´CG=A´CEG=×7×12=42.
③当A´落在BD上时,此时DA=DA´=15,
∴A´与B点重合,
∵AP∥ BC,
∴该情况不存在,
综上所述,的面积为或42.
【点睛】
本题考查了等腰三角形的性质,勾股定理,全等三角形的判定与性质,矩形的判定与性质等知识点.解题的关键是运用分类讨论思想进行解题.
24.(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4).
【解析】
【分析】
(1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标;
解析:(1)A(﹣1,0),D(0,5);(2)d=(m﹣2);(3)点P的坐标为(3,4).
【解析】
【分析】
(1)分别令直线y=x+1,直线y=-x+5x0,y=0,即可求得A点坐标和D点坐标;
(2))过点P作PM⊥x轴,交CD于F,M是垂足,先求出P、F的坐标,即可求出PE=2m4,再通过已知和辅助线判断△PEF是等腰直角三角形,从而得出PE=PF,即可得出结论;
(3)先过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON,过O作OG⊥ON,交PD的延长线于G,然后证明△ODG≌△OCN,再证明△OCN≌△OPN,得出OP=5,在直角三角形OMP中用勾股定理求解即可.
【详解】
解:(1)∵直线y=x+1分别交x轴、y轴于点A、B,
∴令x=0,则y=1,令y=0,则x=﹣1,
∴A(﹣1,0),B(0,1),
又∵直线y=﹣x+5分别交x轴、y轴于点C、D,
∴令x=0,则y=5,令y=0,则x=5,
∴C(5,0),D(0,5)
∴A(﹣1,0),D(0,5);
(2)过点P作PM⊥x轴,交CD于F,M是垂足,如图所示,
由(1)知OA=OB,OC=OD,
∴∠ABO=∠DCO=45°,
∴△AEC为等腰直角三角形,
∴∠PEF=90°,
又∵∠DCO=45°,
∴∠EFP=∠MFC=45°,
∴△PEF为等腰直角三角形,
∴PE=EF=PF,
∵P在直线y=x+1上,P的横坐标为m,
∴P(m,m+1),
F在直线y=﹣x+5上,F的横坐标为m,
∴F(m,﹣m+5),
∴PF=m+1﹣(﹣m+5)=m+1+m﹣5=2m﹣4,
∴d=PE=PF=(2m﹣4)=(m﹣2);
(3)过点C作CN⊥DP,交DP的延长线于点N,连接OP,ON,
过O作OG⊥ON,交PD的延长线于G,如图所示,
∵∠DOC=∠CND=90°,
∴∠ODN+∠OCN=180°,
又∵∠ODG+∠ODN=180°,
∴∠ODG=∠OCN,
∵∠DOG=90°﹣∠DON,∠CON=90°﹣∠DON,
∴∠DOG=∠CON,
在△ODG和△OCN中,
∴△ODG≌△OCN(ASA),
∴OG=ON,
∴∠ONG=∠OGN=45°,
∴∠CNO=∠PNO=45°,
∵∠CPD=135°,CN⊥DP,
∴∠CPN=45°,
∴∠PCN=45°,
∴NP=NC,
在△OCN和△OPN中,
,
∴△OCN≌△OPN(SAS),
∴OP=OC=5,
在Rt△OPM中,
OP2=OM2+MP2,
∴52=m2+(m+1)2,
解得:m=3或m=﹣4(舍去),
∴m+1=4,
∴点P的坐标为(3,4).
【点睛】
此题考查了一次函数与坐标轴的交点,勾股定理,坐标与图形性质,等腰直角三角形的判定与性质,关键是通过作辅助线证明三角形全等,把条件转化到直角三角形OPM中.
25.(1)3;(2)6(3)BD=AM,证明见解析
【分析】
(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角
解析:(1)3;(2)6(3)BD=AM,证明见解析
【分析】
(1)因为速度相等和等腰三角形的已知条件,作平行线构造全等三角形,问题得以解决. (2)这类题一般结论成立,根据(1)中的思路,加上等腰三角形的性质,可以求出定值. (3)根据已知条件可以判断是等腰直角三角形,近而求出≌,得出ED=EM,即可得出结论.
【详解】
(1)
如图,过P点作PF∥AC交BC于F,
∵点P和点Q同时出发,且速度相同,
∴BP=CQ,
∵PF//AQ,
∴∠PFB=∠ACB,∠DPF=∠CQD,
又∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠PFB,
∴BP=PF,
∴PF=CQ,又∠PDF=∠QDC,
∴△PFD≌△QCD,
∴DF=CD=CF,
又因P是AB的中点,PF∥AQ,
∴F是BC的中点,即FC=BC=6,
∴CD=CF=3;
(2)为定值.
如图②,点P在线段AB上,
过点P作PF//AC交BC于F,
则有(1)可知△PBF为等腰三角形,
∵PE⊥BF
∴BE=BF
∵有(1)可知△PFD≌△QCD
∴CD=
∴
(3)BD=AM
证明:∵
∴
∴是等腰直角三角形
∵E为BC的中点
∴
∴,
∴,
∵AH⊥CM
∴
∵
∴
∴≌ (ASA)
∴
∴
即:
26.(1);(2)点F到AD的距离为3,BF=;(3)2
【分析】
(1)连接DF,证明△ADF≌△CDA,得出CDF共线,然后用勾股定理即可;
(2)过点F作FH⊥AD交AD的延长线于点H,FH⊥BC
解析:(1);(2)点F到AD的距离为3,BF=;(3)2
【分析】
(1)连接DF,证明△ADF≌△CDA,得出CDF共线,然后用勾股定理即可;
(2)过点F作FH⊥AD交AD的延长线于点H,FH⊥BC交BC的延长线于K,证明△EHF≌△CDE,再用勾股定理即可;
(3)当B,D,F共线时,此时BF取最小值,求出此时AE的值即可.
【详解】
解:(1)如图,连接DF,
∵∠CAF=90°,∠CAD=45°,
∴∠DAF=45°,
在△CAD和△FAD中,
,
∴△CAD≌△FAD(SAS),
∴DF=CD,
∴∠ADC=∠ADF=90°,
∴C,D,F共线,
∴BF2=BC2+CF2=42+82=80,
∴BF=,
故答案为:;
(2)如图,过点F作FH⊥AD交AD的延长线于点H,FH⊥BC交BC的延长线于K,
∵四边形CEFG是正方形,∴EC=EF,∠FEC=90°,
∴∠DEC+∠FEH=90°,
又∵四边形ABCD是正方形,
∴∠ADC=90°,
∴∠DEC+∠ECD=90°,
∴∠ECD=∠FEH,
又∵∠EDC=∠FHE=90°,
在△ECD和△FEH中,
,
∴△ECD≌△FEH(AAS),
∴FH=ED,
∵AD=4,AE=1,
∴ED=AD-AE=4-1=3,
∴FH=3,即点F到AD的距离为3,
∴∠DHK=∠HDC=∠DCK=90°,
∴四边形CDHK为矩形,
∴HK=CD=4,
∴FK=FH+HK=3+4=7,
∵△ECD≌△FEH,
∴EH=CD=AD=4,
∴AE=DH=CK=1,
∴BK=BC+CK=4+1=5,
在Rt△BFK中,BF=;
(3)∵当A,D,F三点共线时,BF的最短,
∴∠CBF=45°,
∴FH=DH,
由(2)知FH=DE,EH=CD=4,
∴ED=DH=4÷2=2,
∴AE=2.
【点睛】
本题主要考查正方形的性质和全等三角形的判定,关键是要作辅助线构造全等的三角形,在正方形和三角形中辅助线一般是垂线段,要牢记正方形的两个性质,即四边相等,四个内角都是90°.
展开阅读全文