收藏 分销(赏)

人教版中学七7年级下册数学期末复习题.doc

上传人:精*** 文档编号:1727179 上传时间:2024-05-08 格式:DOC 页数:26 大小:608.04KB
下载 相关 举报
人教版中学七7年级下册数学期末复习题.doc_第1页
第1页 / 共26页
人教版中学七7年级下册数学期末复习题.doc_第2页
第2页 / 共26页
点击查看更多>>
资源描述
人教版中学七7年级下册数学期末复习题 一、选择题 1.如图,∠B的同位角是( ) A.∠1 B.∠2 C.∠3 D.∠4 2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( ) A. B. C. D. 3.在平面直角坐标系中,点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.在以下三个命题中,正确的命题有( ) ①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交 ②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补 A.② B.①② C.②③ D.①②③ 5.如图,从①,②,③三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( ) A.0 B.1 C.2 D.3 6.下列说法正确的是( ) A.一个数的立方根有两个,它们互为相反数 B.负数没有立方根 C.任何一个数都有平方根和立方根 D.任何数的立方根都只有一个 7.如图,和相交于点O,则下列结论正确的是( ) A. B. C. D. 8.在平面直角坐标系中,对于点P(x,y),我们把点P’(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(a,b),则点A2021的坐标为(  ) A.(a,b) B.(-b+1,a+1) C.(-a,-b+2) D.(b-1,-a+1) 九、填空题 9.的平方根是_________ 十、填空题 10.已知点P(3,﹣1),则点P关于x轴对称的点Q_____. 十一、填空题 11.如图,是的两条角平分线,,则的度数为_________. 十二、填空题 12.如图,a∥b,∠1=68°,∠2=42°,则∠3=_____________. 十三、填空题 13.如图1是长方形纸带,,将纸带沿折叠成图2,再沿折叠成图3,则图3中的的度数是_________度. 十四、填空题 14.任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______. 十五、填空题 15.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________. 十六、填空题 16.如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为__________. 十七、解答题 17.计算:(1);(2) 十八、解答题 18.求下列各式中的 . (1) (2) 十九、解答题 19.请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠2,∠A=∠D. 求证:∠B=∠C. 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=____________(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD( ) ∵∠A=∠D(已知) ∴∠D=_____________(等量代换) ∴____________∥CD( ) ∴∠B=∠C( ) 二十、解答题 20.如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系.已知三角形ABC的顶点A的坐标为A(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1). (1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形A′B′C′,请你画出三角形A′B′C′,并直接写出点A′的坐标; (2)若点P(m,n)为三角形ABC内的一点,则平移后点P在△A′B′C′内的对应点P′的坐标为 . (3)求三角形ABC的面积. 二十一、解答题 21.已知的整数部分是a,小数部分是b,求a+ 的值。 的整数部分是2,所以的小数部分是 −2,所以a=2,b=−2, a+, 请根据以上解题提示,解答下题: 已知9+ 与9−的小数部分分别为a,b,求ab−4a+3b−2的值. 二十二、解答题 22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3) 二十三、解答题 23.已知:AB∥CD,截线MN分别交AB、CD于点M、N. (1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数; (2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由; (3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为   (直接写出答案). 二十四、解答题 24.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转. (1)①如图1,∠DPC=   度. ②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°旋转360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”. (2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明. 二十五、解答题 25.解读基础: (1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由; (2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由: 应用乐园:直接运用上述两个结论解答下列各题 (3)①如图3,在中,、分别平分和,请直接写出和的关系  ; ②如图4,  . (4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数. 【参考答案】 一、选择题 1.C 解析:C 【分析】 同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角. 【详解】 解:∠B与∠3是DE、BC被AB所截而成的同位角, 故选:C. 【点睛】 本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形. 2.C 【分析】 根据平移的特点即可判断. 【详解】 将图进行平移,得到的图形是 故选C. 【点睛】 此题主要考查平移的特点,解题的关键是熟知平移的定义. 解析:C 【分析】 根据平移的特点即可判断. 【详解】 将图进行平移,得到的图形是 故选C. 【点睛】 此题主要考查平移的特点,解题的关键是熟知平移的定义. 3.D 【分析】 根据各象限内点的坐标特征解答. 【详解】 解:点(3,-2)所在象限是第四象限. 故选:D. 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A 【分析】 根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可. 【详解】 解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误; ②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确; ③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误 综上:正确的命题是②. 故选A. 【点睛】 此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键. 5.D 【分析】 分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可. 【详解】 解:如图所示: (1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4; 当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F, 即①②可证得③; (2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4, 当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D, 即①③可证得②; (3)当③∠A=∠F,故DF∥AC,则∠4=∠C, 当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2, 即②③可证得①. 故正确的有3个. 故选:D. 【点睛】 本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键. 6.D 【分析】 根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断. 【详解】 A、一个数的立方根只有1个,故本选项错误; B、负数有立方根,故本选项错误; C、负数只有立方根,没有平方根,故本选项错误; D、任何数的立方根都只有一个,故本选项正确. 故选:D. 【点睛】 本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念. 7.A 【分析】 根据对顶角的性质和平行线的性质判断即可. 【详解】 解:A、∵和是对顶角, ∴,选项正确,符合题意; B、∵与OB相交于点A, ∴与OB不平行, ∴,选项错误,不符合题意; C、∵AO与BC相交于点B, ∴AO与BC不平行, ∴,选项错误,不符合题意; D、∵OD与BC相交于点C, ∴OD与BC不平行, ∴,选项错误,不符合题意. 故选:A. 【点睛】 此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等. 8.A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2( 解析:A 【分析】 据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可. 【详解】 解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)… ∴依此类推,每4个点为一个循环组依次循环, ∵2021÷4=505……1, ∴点A2021的坐标与A1的坐标相同,为(a,b), 故选:A. 【点睛】 本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点. 九、填空题 9.. 【详解】 【分析】先确定,再根据平方根定义可得的平方根是±. 【详解】因为,6的平方根是±,所以的平方根是±. 故正确答案为±. 【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示 解析:. 【详解】 【分析】先确定,再根据平方根定义可得的平方根是±. 【详解】因为,6的平方根是±,所以的平方根是±. 故正确答案为±. 【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义. 十、填空题 10.(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要 解析:(3,1) 【分析】 根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可. 【详解】 解:∵点P(3,﹣1) ∴点P关于x轴对称的点Q(3,1) 故答案为(3,1). 【点睛】 本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键. 十一、填空题 11.140°. 【分析】 △ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解. 【详 解析:140°. 【分析】 △ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解. 【详解】 △ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°, ∵BO、CO是∠ABC,∠ACB的两条角平分线. ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°, 在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°. 故填:140°. 【点睛】 本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义. 十二、填空题 12.110° 【分析】 如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5. 【详解】 如图,∵a∥b, ∴∠4=∠1=68°, ∴∠5=∠4=68 解析:110° 【分析】 如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5. 【详解】 如图,∵a∥b, ∴∠4=∠1=68°, ∴∠5=∠4=68°, ∵∠2=42°, ∴∠5+∠2=68°+42°=110°, ∵a∥b, ∴∠3=∠2+∠5, ∴∠3=110°, 故答案为:110°. 【点睛】 本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键. 十三、填空题 13.123 【分析】 由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG. 【详解】 解:∵AD// 解析:123 【分析】 由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG. 【详解】 解:∵AD//BC, ∴∠DEF=∠EFB=19°, 在图2中,∠GFC=180°-∠FGD=180°-2∠EFG=142°, 在图3中,∠CFE=∠GFC-∠EFG=123°. 故答案为:123. 【点睛】 本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变. 十四、填空题 14.255 【分析】 根据[a]的含义求出这个数的范围,再求最大值. 【详解】 解:设这个数是p, ∵[x]=1 .∴1≤x<2. ∴1≤<2. ∴1≤m<4. ∴1≤<16. ∴1≤p<256. ∵p 解析:255 【分析】 根据[a]的含义求出这个数的范围,再求最大值. 【详解】 解:设这个数是p, ∵[x]=1 .∴1≤x<2. ∴1≤<2. ∴1≤m<4. ∴1≤<16. ∴1≤p<256. ∵p是整数. ∴p的最大值为255. 故答案为:255. 【点睛】 本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键. 十五、填空题 15.(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 解析:(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 十六、填空题 16.【分析】 观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标; 【详解】 , , , , , 故答案为: 【点睛】 本题考查了坐标系中点的规律,找到规律是解题的关键. 解析: 【分析】 观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标; 【详解】 , , , , , 故答案为: 【点睛】 本题考查了坐标系中点的规律,找到规律是解题的关键. 十七、解答题 17.(1)0 ;(2)2 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 解析:(1)0 ;(2) 【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可; 试题解析: ①原式=2+2-4=0 ②原式== 十八、解答题 18.(1)或;(2). 【分析】 (1)先将方程进行变形,再利用平方根的定义进行求解即可; (2)先将方程进行变形,再利用立方根的定义进行求解即可. 【详解】 解:(1), ∴, ∴; (2), ∴, 解析:(1)或;(2). 【分析】 (1)先将方程进行变形,再利用平方根的定义进行求解即可; (2)先将方程进行变形,再利用立方根的定义进行求解即可. 【详解】 解:(1), ∴, ∴; (2), ∴, ∴. 【点睛】 本题考查了平方根与立方根,理解相关定义是解决本题的关键. 十九、解答题 19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,( 解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等 【分析】 根据对顶角相等,平行线的性质与判定定理填空即可. 【详解】 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,(对顶角相等) ∴∠2=∠3(等量代换) (同位角相等,两直线平行) ∴∠A=∠BFD(两直线平行,同位角相等) ∵∠A=∠D(已知) ∴∠D=∠BFD(等量代换) ∴AB∥CD(内错角相等,两直线平行) ∴∠B=∠C(两直线平行,内错角相等). 【点睛】 本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 二十、解答题 20.(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5. 【分析】 (1)首先确定A、B、C三点平移后的位置,再连接即可; (2)利用平移的性质得出P(m,n)的对应点P′的坐标即 解析:(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5. 【分析】 (1)首先确定A、B、C三点平移后的位置,再连接即可; (2)利用平移的性质得出P(m,n)的对应点P′的坐标即可; (3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案. 【详解】 解:(1)如图所示:△A′B′C′即为所求: A′(4,0); (2)∵△ABC先向右平移5个单位长度,再向下平移4个单位长度,得到△A′B′C′, ∴P(m,n)的对应点P′的坐标为(m+5,n-4); (3)△ABC的面积=3×3−×2×1−×3×1−×3×2=3.5. 【点睛】 本题主要考查了坐标与图形的变化-平移,三角形面积求法以及坐标系内图形平移,正确得出对应点位置是解题关键. 二十一、解答题 21.-3. 【解析】 【分析】 根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题. 【详解】 ∵9+ 与9−的小数部分分别为a,b, ∴a=9+−12=−3,b=9−−5=4− 解析:-3. 【解析】 【分析】 根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题. 【详解】 ∵9+ 与9−的小数部分分别为a,b, ∴a=9+−12=−3,b=9−−5=4−, ∴ab−4a+3b−2=(−3)(4−)−4(−3)+3(4-)-2=7-13-12-4+12+12-3-2=-3. 【点睛】 此题考查估算无理数的大小,解题关键在于分别求得a、b的值. 二十二、解答题 22.选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答 解析:选择建成圆形草坪的方案,理由详见解析 【分析】 根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案. 【详解】 解:选择建成圆形草坪的方案,理由如下: 设建成正方形时的边长为x米, 由题意得:x2=81, 解得:x=±9, ∵x>0, ∴x=9, ∴正方形的周长为4×9=36, 设建成圆形时圆的半径为r米, 由题意得:πr2=81. 解得:, ∵r>0. ∴, ∴圆的周长=, ∵, ∴, ∴建成圆形草坪时所花的费用较少, 故选择建成圆形草坪的方案. 【点睛】 本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键. 二十三、解答题 23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行 解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3) 【分析】 (1)由非负性可求α,β的值,由平行线的性质和外角性质可求解; (2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解; (3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解. 【详解】 解:(1)∵+(β﹣60)2=0, ∴α=30,β=60, ∵AB∥CD, ∴∠AMN=∠MND=60°, ∵∠AMN=∠B+∠BEM=60°, ∴∠BEM=60°﹣30°=30°; (2)∠DEF+2∠CDF=150°. 理由如下:过点E作直线EH∥AB, ∵DF平分∠CDE, ∴设∠CDF=∠EDF=x°; ∵EH∥AB, ∴∠DEH=∠EDC=2x°, ∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°; ∴∠DEF=150°﹣2∠CDF, 即∠DEF+2∠CDF=150°; (3)如图3,设MQ与CD交于点E, ∵MQ平分∠BMT,QC平分∠DCP, ∴∠BMT=2∠PMQ,∠DCP=2∠DCQ, ∵AB∥CD, ∴∠BME=∠MEC,∠BMP=∠PND, ∵∠MEC=∠Q+∠DCQ, ∴2∠MEC=2∠Q+2∠DCQ, ∴∠PMB=2∠Q+∠PCD, ∵∠PND=∠PCD+∠CPM=∠PMB, ∴∠CPM=2∠Q, ∴∠Q与∠CPM的比值为, 故答案为:. 【点睛】 本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键. 二十四、解答题 24.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析. 【分析】 (1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和 解析:(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析. 【分析】 (1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同; (2)分两种情况讨论:当在上方时,当在下方时,①分别用含的代数式表示,从而可得的值;②分别用含的代数式表示,得到是一个含的代数式,从而可得答案. 【详解】 解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°, ∴∠DPC=180﹣30﹣60=90°, 故答案为90; ②如图1﹣1,当BD∥PC时, ∵PC∥BD,∠DBP=90°, ∴∠CPN=∠DBP=90°, ∵∠CPA=60°, ∴∠APN=30°, ∵转速为10°/秒, ∴旋转时间为3秒; 如图1﹣2,当PC∥BD时, ∵∠PBD=90°, ∴∠CPB=∠DBP=90°, ∵∠CPA=60°, ∴∠APM=30°, ∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°, ∵转速为10°/秒, ∴旋转时间为21秒, 如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP, ∵PA∥BD, ∴∠DBP=∠APN=90°, ∴三角板PAC绕点P逆时针旋转的角度为90°, ∵转速为10°/秒, ∴旋转时间为9秒, 如图1﹣4,当PA∥BD时, ∵∠DPB=∠ACP=30°, ∴AC∥BP, ∵PA∥BD, ∴∠DBP=∠BPA=90°, ∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°, ∵转速为10°/秒, ∴旋转时间为27秒, 如图1﹣5,当AC∥DP时, ∵AC∥DP, ∴∠C=∠DPC=30°, ∴∠APN=180°﹣30°﹣30°﹣60°=60°, ∴三角板PAC绕点P逆时针旋转的角度为60°, ∵转速为10°/秒, ∴旋转时间为6秒, 如图1﹣6,当时, ∴三角板PAC绕点P逆时针旋转的角度为 ∵转速为10°/秒, ∴旋转时间为秒, 如图1﹣7,当AC∥BD时, ∵AC∥BD, ∴∠DBP=∠BAC=90°, ∴点A在MN上, ∴三角板PAC绕点P逆时针旋转的角度为180°, ∵转速为10°/秒, ∴旋转时间为18秒, 当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”; (2)如图,当在上方时, ①正确, 理由如下:设运动时间为t秒,则∠BPM=2t, ∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t. ∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t, ∴ ②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误. 当在下方时,如图, ①正确, 理由如下:设运动时间为t秒,则∠BPM=2t, ∴∠BPN=180°﹣2t,∠DPM= ∠APN=3t. ∴∠CPD= ∴ ②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误. 综上:①正确,②错误. 【点睛】 本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键. 二十五、解答题 25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结 解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); . 【分析】 (1)根据三角形外角等于不相邻的两个内角之和即可得出结论; (2)根据三角形内角和定理及对顶角相等即可得出结论; (3)①根据角平分线的定义及三角形内角和定理即可得出结论; ②连结BE,由(2)的结论及四边形内角和为360°即可得出结论; (4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论. 【详解】 (1).理由如下: 如图1,,,,; (2).理由如下: 在中,,在中,,,; (3)①,,、分别平分和,,. 故答案为:. ②连结. ∵,. 故答案为:; (4)由(1)知,,,,,,,,,,,; . 【点睛】 本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服