资源描述
人教版中学七7年级下册数学期末复习题
一、选择题
1.如图,∠B的同位角是( )
A.∠1 B.∠2 C.∠3 D.∠4
2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )
A. B.
C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.在以下三个命题中,正确的命题有( )
①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补
A.② B.①② C.②③ D.①②③
5.如图,从①,②,③三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
A.0 B.1 C.2 D.3
6.下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
B.负数没有立方根
C.任何一个数都有平方根和立方根
D.任何数的立方根都只有一个
7.如图,和相交于点O,则下列结论正确的是( )
A. B. C. D.
8.在平面直角坐标系中,对于点P(x,y),我们把点P’(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An,….若点A1的坐标为(a,b),则点A2021的坐标为( )
A.(a,b) B.(-b+1,a+1)
C.(-a,-b+2) D.(b-1,-a+1)
九、填空题
9.的平方根是_________
十、填空题
10.已知点P(3,﹣1),则点P关于x轴对称的点Q_____.
十一、填空题
11.如图,是的两条角平分线,,则的度数为_________.
十二、填空题
12.如图,a∥b,∠1=68°,∠2=42°,则∠3=_____________.
十三、填空题
13.如图1是长方形纸带,,将纸带沿折叠成图2,再沿折叠成图3,则图3中的的度数是_________度.
十四、填空题
14.任何实数a,可用表示不超过a的最大整数,如,现对50进行如下操作:50,这样对50只需进行3次操作后变为1,类似地,对72只需进行3次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是______.
十五、填空题
15.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________.
十六、填空题
16.如图,在平面直角坐标系中,点,点,点,点按照这样的规律下去,点的坐标为__________.
十七、解答题
17.计算:(1);(2)
十八、解答题
18.求下列各式中的 .
(1) (2)
十九、解答题
19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:
已知:如图,∠1=∠2,∠A=∠D.
求证:∠B=∠C.
证明:∵∠1=∠2,(已知)
又:∵∠1=∠3,( )
∴∠2=____________(等量代换)
(同位角相等,两直线平行)
∴∠A=∠BFD( )
∵∠A=∠D(已知)
∴∠D=_____________(等量代换)
∴____________∥CD( )
∴∠B=∠C( )
二十、解答题
20.如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系.已知三角形ABC的顶点A的坐标为A(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1).
(1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形A′B′C′,请你画出三角形A′B′C′,并直接写出点A′的坐标;
(2)若点P(m,n)为三角形ABC内的一点,则平移后点P在△A′B′C′内的对应点P′的坐标为 .
(3)求三角形ABC的面积.
二十一、解答题
21.已知的整数部分是a,小数部分是b,求a+ 的值。
的整数部分是2,所以的小数部分是 −2,所以a=2,b=−2,
a+,
请根据以上解题提示,解答下题:
已知9+ 与9−的小数部分分别为a,b,求ab−4a+3b−2的值.
二十二、解答题
22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
二十三、解答题
23.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
二十四、解答题
24.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.
(1)①如图1,∠DPC= 度.
②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°旋转360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.
(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.
二十五、解答题
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
【参考答案】
一、选择题
1.C
解析:C
【分析】
同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.
【详解】
解:∠B与∠3是DE、BC被AB所截而成的同位角,
故选:C.
【点睛】
本题主要考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
2.C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
解析:C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
3.D
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点(3,-2)所在象限是第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.
【详解】
解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误;
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误
综上:正确的命题是②.
故选A.
【点睛】
此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.
5.D
【分析】
分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.
【详解】
解:如图所示:
(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;
当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,
即①②可证得③;
(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,
当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,
即①③可证得②;
(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,
当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,
即②③可证得①.
故正确的有3个.
故选:D.
【点睛】
本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.
6.D
【分析】
根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.
【详解】
A、一个数的立方根只有1个,故本选项错误;
B、负数有立方根,故本选项错误;
C、负数只有立方根,没有平方根,故本选项错误;
D、任何数的立方根都只有一个,故本选项正确.
故选:D.
【点睛】
本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.
7.A
【分析】
根据对顶角的性质和平行线的性质判断即可.
【详解】
解:A、∵和是对顶角,
∴,选项正确,符合题意;
B、∵与OB相交于点A,
∴与OB不平行,
∴,选项错误,不符合题意;
C、∵AO与BC相交于点B,
∴AO与BC不平行,
∴,选项错误,不符合题意;
D、∵OD与BC相交于点C,
∴OD与BC不平行,
∴,选项错误,不符合题意.
故选:A.
【点睛】
此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等.
8.A
【分析】
据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:观察发现:A1(a,b),A2(
解析:A
【分析】
据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:观察发现:A1(a,b),A2(-b+1,a+1),A3(-a,-b+2),A4(b-1,-a+1),A5(a,b),A6(-b+1,a+1)…
∴依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505……1,
∴点A2021的坐标与A1的坐标相同,为(a,b),
故选:A.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.
九、填空题
9..
【详解】
【分析】先确定,再根据平方根定义可得的平方根是±.
【详解】因为,6的平方根是±,所以的平方根是±.
故正确答案为±.
【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示
解析:.
【详解】
【分析】先确定,再根据平方根定义可得的平方根是±.
【详解】因为,6的平方根是±,所以的平方根是±.
故正确答案为±.
【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义.
十、填空题
10.(3,1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.
【详解】
解:∵点P(3,﹣1)
∴点P关于x轴对称的点Q(3,1)
故答案为(3,1).
【点睛】
本题主要
解析:(3,1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.
【详解】
解:∵点P(3,﹣1)
∴点P关于x轴对称的点Q(3,1)
故答案为(3,1).
【点睛】
本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键.
十一、填空题
11.140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.
【详
解析:140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.
【详解】
△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,
∵BO、CO是∠ABC,∠ACB的两条角平分线.
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,
在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.
故填:140°.
【点睛】
本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.
十二、填空题
12.110°
【分析】
如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.
【详解】
如图,∵a∥b,
∴∠4=∠1=68°,
∴∠5=∠4=68
解析:110°
【分析】
如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.
【详解】
如图,∵a∥b,
∴∠4=∠1=68°,
∴∠5=∠4=68°,
∵∠2=42°,
∴∠5+∠2=68°+42°=110°,
∵a∥b,
∴∠3=∠2+∠5,
∴∠3=110°,
故答案为:110°.
【点睛】
本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.
十三、填空题
13.123
【分析】
由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.
【详解】
解:∵AD//
解析:123
【分析】
由题意根据折叠的性质可得∠DEF=∠EFB=19°,图2中根据平行线的性质可得∠GFC=142°,图3中根据角的和差关系可得∠CFE=∠GFC-∠EFG.
【详解】
解:∵AD//BC,
∴∠DEF=∠EFB=19°,
在图2中,∠GFC=180°-∠FGD=180°-2∠EFG=142°,
在图3中,∠CFE=∠GFC-∠EFG=123°.
故答案为:123.
【点睛】
本题考查平行线的性质,图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
十四、填空题
14.255
【分析】
根据[a]的含义求出这个数的范围,再求最大值.
【详解】
解:设这个数是p,
∵[x]=1
.∴1≤x<2.
∴1≤<2.
∴1≤m<4.
∴1≤<16.
∴1≤p<256.
∵p
解析:255
【分析】
根据[a]的含义求出这个数的范围,再求最大值.
【详解】
解:设这个数是p,
∵[x]=1
.∴1≤x<2.
∴1≤<2.
∴1≤m<4.
∴1≤<16.
∴1≤p<256.
∵p是整数.
∴p的最大值为255.
故答案为:255.
【点睛】
本题考查了估算无理数的大小,正确理解取整含义是求解本题的关键.
十五、填空题
15.(4,0)或(﹣4,0)
【详解】
试题解析:设C点坐标为(|x|,0)
∴
解得:x=±4
所以,点C的坐标为(4,0)或(-4,0).
解析:(4,0)或(﹣4,0)
【详解】
试题解析:设C点坐标为(|x|,0)
∴
解得:x=±4
所以,点C的坐标为(4,0)或(-4,0).
十六、填空题
16.【分析】
观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;
【详解】
,
,
,
,
,
故答案为:
【点睛】
本题考查了坐标系中点的规律,找到规律是解题的关键.
解析:
【分析】
观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;
【详解】
,
,
,
,
,
故答案为:
【点睛】
本题考查了坐标系中点的规律,找到规律是解题的关键.
十七、解答题
17.(1)0 ;(2)2
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
解析:(1)0 ;(2)
【解析】试题分析:(1)先对根式、负指数化简,再根据运算顺序依次计算即可;(2)先去绝对值符号和0次幂,再按运算顺序依次计算即可;
试题解析:
①原式=2+2-4=0
②原式==
十八、解答题
18.(1)或;(2).
【分析】
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1),
∴,
∴;
(2),
∴,
解析:(1)或;(2).
【分析】
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1),
∴,
∴;
(2),
∴,
∴.
【点睛】
本题考查了平方根与立方根,理解相关定义是解决本题的关键.
十九、解答题
19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据对顶角相等,平行线的性质与判定定理填空即可.
【详解】
证明:∵∠1=∠2,(
解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据对顶角相等,平行线的性质与判定定理填空即可.
【详解】
证明:∵∠1=∠2,(已知)
又:∵∠1=∠3,(对顶角相等)
∴∠2=∠3(等量代换)
(同位角相等,两直线平行)
∴∠A=∠BFD(两直线平行,同位角相等)
∵∠A=∠D(已知)
∴∠D=∠BFD(等量代换)
∴AB∥CD(内错角相等,两直线平行)
∴∠B=∠C(两直线平行,内错角相等).
【点睛】
本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
二十、解答题
20.(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5.
【分析】
(1)首先确定A、B、C三点平移后的位置,再连接即可;
(2)利用平移的性质得出P(m,n)的对应点P′的坐标即
解析:(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5.
【分析】
(1)首先确定A、B、C三点平移后的位置,再连接即可;
(2)利用平移的性质得出P(m,n)的对应点P′的坐标即可;
(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)如图所示:△A′B′C′即为所求:
A′(4,0);
(2)∵△ABC先向右平移5个单位长度,再向下平移4个单位长度,得到△A′B′C′,
∴P(m,n)的对应点P′的坐标为(m+5,n-4);
(3)△ABC的面积=3×3−×2×1−×3×1−×3×2=3.5.
【点睛】
本题主要考查了坐标与图形的变化-平移,三角形面积求法以及坐标系内图形平移,正确得出对应点位置是解题关键.
二十一、解答题
21.-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−
解析:-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−,
∴ab−4a+3b−2=(−3)(4−)−4(−3)+3(4-)-2=7-13-12-4+12+12-3-2=-3.
【点睛】
此题考查估算无理数的大小,解题关键在于分别求得a、b的值.
二十二、解答题
22.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
二十三、解答题
23.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行
解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
二十四、解答题
24.(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和
解析:(1)①90;②t为或或或或或或;(2)①正确,②错误,证明见解析.
【分析】
(1)①由平角的定义,结合已知条件可得:从而可得答案;②当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;
(2)分两种情况讨论:当在上方时,当在下方时,①分别用含的代数式表示,从而可得的值;②分别用含的代数式表示,得到是一个含的代数式,从而可得答案.
【详解】
解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,
∴∠DPC=180﹣30﹣60=90°,
故答案为90;
②如图1﹣1,当BD∥PC时,
∵PC∥BD,∠DBP=90°,
∴∠CPN=∠DBP=90°,
∵∠CPA=60°,
∴∠APN=30°,
∵转速为10°/秒,
∴旋转时间为3秒;
如图1﹣2,当PC∥BD时,
∵∠PBD=90°,
∴∠CPB=∠DBP=90°,
∵∠CPA=60°,
∴∠APM=30°,
∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,
∵转速为10°/秒,
∴旋转时间为21秒,
如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,
∵PA∥BD,
∴∠DBP=∠APN=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°,
∵转速为10°/秒,
∴旋转时间为9秒,
如图1﹣4,当PA∥BD时,
∵∠DPB=∠ACP=30°,
∴AC∥BP,
∵PA∥BD,
∴∠DBP=∠BPA=90°,
∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,
∵转速为10°/秒,
∴旋转时间为27秒,
如图1﹣5,当AC∥DP时,
∵AC∥DP,
∴∠C=∠DPC=30°,
∴∠APN=180°﹣30°﹣30°﹣60°=60°,
∴三角板PAC绕点P逆时针旋转的角度为60°,
∵转速为10°/秒,
∴旋转时间为6秒,
如图1﹣6,当时,
∴三角板PAC绕点P逆时针旋转的角度为
∵转速为10°/秒,
∴旋转时间为秒,
如图1﹣7,当AC∥BD时,
∵AC∥BD,
∴∠DBP=∠BAC=90°,
∴点A在MN上,
∴三角板PAC绕点P逆时针旋转的角度为180°,
∵转速为10°/秒,
∴旋转时间为18秒,
当时,如图1-3,1-4,旋转时间分别为:,
综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;
(2)如图,当在上方时,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.
∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
当在下方时,如图,
①正确,
理由如下:设运动时间为t秒,则∠BPM=2t,
∴∠BPN=180°﹣2t,∠DPM= ∠APN=3t.
∴∠CPD=
∴
②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.
综上:①正确,②错误.
【点睛】
本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.
二十五、解答题
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
展开阅读全文