1、人教版七年级数学下册期末测试试卷含答案一、选择题14的算术平方根是()A2B4CD2为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )ABCD3平面直角坐标系中有一点,则点在( )A第一象限B第二象限C第三象限D第四象限4下列语句中,是假命题的是()A有理数和无理数统称实数B在同一平面内,过一点有且只有一条直线与已知直线垂直C在同一平面内,垂直于同一条直线的两条直线互相平行D两个锐角的和是锐角5如图,直线,点E,F分别在直线AB和直
2、线CD上,点P在两条平行线之间,和的角平分线交于点H,已知,则的度数为( )ABCD6若,则( )A632.9B293.8C2938D63297如图,和相交于点O,则下列结论正确的是( )ABCD8如图,动点在平面直角坐标系中,按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,按这样的运动规律,经过第2021次运动后,动点的坐标是( )ABCD九、填空题9的算术平方根是_十、填空题10已知点P(3,1)关于x轴的对称点Q的坐标是(ab,1b),则a_,b_十一、填空题11如图,在中,.三角形的外角和的角平分线交于点E,则_度.十二、填空题
3、12如图,直线,相交于点E,若,则等于_十三、填空题13如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_十四、填空题14用“”定义一种新运算:对于任意有理数a和b,规定ab=例如:(-3)2= = 2从8,7,6,5,4,3,2,1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(ab)的值,并计算ab,那么所有运算结果中的最大值是_十五、填空题15已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标_.十六、填空题16如图,已知A1(1,2),A2(2,2),A3(3,0),A4(4,2),A5(5,2),A6(6,0),按这样的规律,则点A2021
4、的坐标为 _十七、解答题17计算下列各题:(1); (2)-;(3)-+.十八、解答题18求下列各式中的x值:(1)25x2-64=0(2)x3-3=十九、解答题19如图所示,完成下列填空15(已知)a/ (同位角相等,两直线平行)3 (已知)a/b( )5+ 180(已知)a/b( )二十、解答题20在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足(1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标;(2)点的坐标为,的面积是的倍,求点的坐标二十一、解答题21已知:a是的小数部分,b是的小数部分(1)求a、b的值;(2)求4a+4b+5的平方根二十二、解答题22有一块面
5、积为100cm2的正方形纸片(1)该正方形纸片的边长为 cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3小丽能用这块纸片裁剪出符合要求的纸片吗?二十三、解答题23已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=90时,试判断PM与MN的位置关系,并说明理由;若PA平分EPM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请
6、你在备用图中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)二十四、解答题24已知两条直线l1,l2,l1l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足(1)如图,求证:ADBC;(2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分CAD;()如图,当时,求DAM的度数;()如图,当时,求ACD的度数二十五、解答题25如图1,已知ABCD,BE平分ABD,DE平分BDC(1)求证:BED90;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,EDF,ABF的角平分线与CDF的角平分线DG交于点
7、G,试用含的式子表示BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,EBM的角平分线与FDN的角平分线交于点G,探究BGD与BFD之间的数量关系,请直接写出结论:【参考答案】一、选择题1A解析:A【分析】依据算术平方根的定义解答即可【详解】4的算术平方根是2,故选:A【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义2B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形解析:B【分析】根据平移的性质,图形平移前
8、后的形状和大小没有变化,只是位置发生变化即可求解【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形翻折得到,不合题意;D.选项是原图形旋转得到,不合题意故选:B【点睛】本题考查了平移的性质,理解平移的定义和性质是解题关键3D【分析】根据平面直角坐标系内各象限内点的坐标符号特征判定即可【详解】解:根据平面直角坐标系内各象限内点的坐标符号特征可知:在第四象限故选D【点睛】本题考查了各象限内点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)记住各象限内点的坐标的符号是解决的关键4D【分析】根据实数的分类
9、,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键5D【分析】过点P作PQAB,过点H作HGAB,根据平行线的性质得到EPF=BEP+DFP=78,结合角平分线的定义得到AEH+CF
10、H,同理可得EHF=AEH+CFH【详解】解:过点P作PQAB,过点H作HGAB, ,则PQCD,HGCD,BEP=QPE,DFP=QPF,EPF=QPE+QPF=78,BEP+DFP=78,AEP+CFP=360-78=282,EH平分AEP,HF平分CFP,AEH+CFH=2822=141,同理可得:EHF=AEH+CFH=141,故选D【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论6B【分析】把,再利用立方根的性质化简即可得到答案.【详解】解: , 故选:【点睛】本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解
11、题的关键.7A【分析】根据对顶角的性质和平行线的性质判断即可【详解】解:A、和是对顶角,选项正确,符合题意;B、与OB相交于点A,与OB不平行,选项错误,不符合题意;C、AO与BC相交于点B,AO与BC不平行,选项错误,不符合题意;D、OD与BC相交于点C,OD与BC不平行,,选项错误,不符合题意故选:A【点睛】此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质对顶角相等8D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:由图可知:横坐标1,2,3,4依解析:
12、D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0,每4次一轮这一规律,进而求出即可【详解】解:由图可知:横坐标1,2,3,4依次递增,则第2021个点的横坐标为2021;纵坐标2,0,1,0,2,0,1,04个一循环,20214=5051,经过第2021次运动后,P(2021,2)故选D【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键九、填空题93【分析】根据算术平方根的性质解答即可【详解】解:,0.09的算术平方根是0.3故答案为:0.3【点睛】本题考查了算术平方根,解题
13、的关键是化简后再求算术平方根解析:3【分析】根据算术平方根的性质解答即可【详解】解:,0.09的算术平方根是0.3故答案为:0.3【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根十、填空题100 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解析:0 【分析】根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案【详解】解:点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),a+b=3,1-b=1,解得:a=3,b=0,故答案为:3,
14、0【点睛】此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键十一、填空题11【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,解析:【分析】如图,先根据三角形的内角和定理求出1+2的度数,再求出DAC+ACF的度数,然后根据角平分线的定义可求出3+4的度数,进而可得答案.【详解】解:如图,B=40,1+2=180B=140,DAC+ACF=36012=220,AE和CE分别是和的角平分线,.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于
15、基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.十二、填空题1280.【分析】先根据补角的定义求出BEC的度数,再由平行线的性质即可得出结论【详解】解:AEC=100,BEC=180-100=80DFAB,D=BE解析:80.【分析】先根据补角的定义求出BEC的度数,再由平行线的性质即可得出结论【详解】解:AEC=100,BEC=180-100=80DFAB,D=BEC=80故答案为:80.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等十三、填空题13【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点
16、睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质十四、填空题148【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键解析:8【解析】解:当ab时,ab= =a,a最大为8;当ab时,ab=b,b最大为8,故答案为:8点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键十五、填空题15(4,
17、0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).解析:(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).十六、填空题16(2021,2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标【详解解析:(2021,2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及20216所得的整数及余数,可计算出点A2021的横坐标,再根据余数
18、对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现,每6个点形成一个循环,A6(6,0),OA66,202163365,点A2021的位于第337个循环组的第5个,点A2021的横坐标为6336+52021,其纵坐标为:2,点A2021的坐标为(2021,2)故答案为:(2021,2)【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解十七、解答题17(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析
19、】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.十八、解答题18(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可解析:(1)x=;(2)x=【解析】【分析】(1)常数项移到右边,再将含x项的系数化为1,最后根据平方根的定义计算可得; (2)将原式变形为x3=a(a为常数)的形式,再根据立方根的定义计算可得【详解】解:(1)25x
20、2-64=0,25x2=64,则x2=,x=;(2)x3-3=,x3=,则x=故答案为:(1)x=;(2)x=.【点睛】本题主要考查立方根和平方根,解题的关键是将原等式变形为x3=a或x2=a(a为常数)的形式及平方根、立方根的定义十九、解答题19b,5,内错角相等,两直线平行,4,同旁内角互补,两直线平行【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解【详解】解:15,(已解析:b,5,内错角相等,两直线平行,4,同旁内角互补,两直线平行【分析】准确的找出“三线八角”中的同位角、内错角、同旁内角,然后根据平行线的判定定理进行求解【详解】解:15,(
21、已知)ab(同位角相等,两直线平行);35,(已知)ab(内错角相等,两直线平行);54180,(已知)ab(同旁内角互补,两直线平行)故答案是:b,5,内错角相等,两直线平行,4,同旁内角互补,两直线平行【点睛】本题考查平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键二十、解答题20(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-解析:(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0
22、,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),OAB的面积是DAB面积的2倍,则判断点A、点B在y轴的右侧,即a0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标【详解】解:(1)a没有平方根,a0,-a0,点B到x轴的距离是点A到x轴距离的3倍,a+b=4,解得:a=-2或a=1(舍),b=6,此时点B的坐标为(-2,6);(2)点A的坐标为(a,-a),点B坐标为(a,4-a),AB=4,AB与y轴平行,点D的坐标为(4,-2),OAB的面
23、积是DAB面积的2倍,点A、点B在y轴的右侧,即a0,解得:a=或a=8,B点坐标为(,)或(8,-4)【点睛】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系也考查了三角形的面积公式和平方根的性质二十一、解答题21(1)a3,b4;(2)3【分析】(1)根据34,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可【详解】解:(1)34,118+12,解析:(1)a3,b4;(2)3【分析】(1)根据34,即可求出a、b的值;(2)把a,b代入代数式计算求值,再求平方根即可【详解】解:(1)34,118+12,485,a是的小数部分,b是的小数部
24、分,a8+113,b844(2),4a+4b+5的平方根为:3【点睛】本题考查了无理数的估算,求一个数的平方根等知识,能熟练估算的近似值,进而求出a、b的值是解题关键二十二、解答题22(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10
25、cm;故答案为:10;(2)长方形纸片的长宽之比为4:3,设长方形纸片的长为4xcm,则宽为3xcm,则4x3x90,12x290,x2,解得:x或x-(负值不符合题意,舍去),长方形纸片的长为2cm,56,102,小丽不能用这块纸片裁出符合要求的纸片【点睛】本题考查了算术平方根解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无理数的大小二十三、解答题23(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条解析:(1)PMMN
26、,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条件可得到PMMN;过点N作NHCD,利用角平分线的定义以及平行线的性质求得MNH=35,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决【详解】解:(1)PMMN,理由见解析:AB/CD,APM=PMQ,APM+QMN=90,PMQ +QMN=90,PMMN;过点N作NHCD,AB/CD,AB/ NHCD,QMN=MNH,EPA=ENH,PA平分EPM,EPA= MPA,APM+QMN=90,EPA +MNH=90,即ENH +MNH=9
27、0,MNQ +MNH +MNH=90,MNQ=20,MNH=35,EPA=ENH=MNQ +MNH=55,EPB=180-55=125,EPB的度数为125;(2)当点M,N分别在射线QC,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM=PMQ, APM +QMN=90;当点M,N分别在射线QC,线段PQ上时,如图:PMMN,AB/CD,PMN=90,APM=PMQ, PMQ -QMN=90,APM -QMN=90;当点M,N分别在射线QD,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM+PMQ=180, APM+90-QMN=180,APM -QM
28、N=90;综上,APM +QMN=90或APM -QMN=90【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键二十四、解答题24(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得解析:(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得,然后
29、根据即可得;()设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得【详解】(1),又,;(2)(),由(1)已得:,;()设,则,平分,由(1)已得:,即,解得,又,【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键二十五、解答题25(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180解析:(1)见解析;(2)BGD;(3)
30、2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180,从而根据BED180(EBD+EDB)即可得到答案;(2)过点G作GPAB,根据ABCD,得到GPABCD,从而得到BGDBGP+PGDABG+CDG,然后根据EBD+EDB90,ABD+BDC180,得到ABE+EDC90,即ABE+FDC90,再利用角平分线的定义求出2ABG+2CDG90即可得到答案;(3)过点F、G分别作FMAB、GMAB,从而得到ABGMFNCD,得到BGDBGM+DGM4+6,根据BG平分FBP,DG平分FDQ,4FBP(1803),6F
31、DQ(1805),即可求解.【详解】解:(1)证明:BE平分ABD,EBDABD,DE平分BDC,EDBBDC,EBD+EDB(ABD+BDC),ABCD,ABD+BDC180,EBD+EDB90,BED180(EBD+EDB)90(2)解:如图2,由(1)知:EBD+EDB90,又ABD+BDC180,ABE+EDC90,即ABE+FDC90,BG平分ABE,DG平分CDF,ABE2ABG,CDF2CDG,2ABG+2CDG90,过点G作GPAB,ABCD,GPABCDABGBGP,PGDCDG,BGDBGP+PGDABG+CDG;(3)如图,过点F、G分别作FNAB、GMAB,ABCD,ABGMFNCD,3BFN,5DFN,4BGM,6DGM,BFDBFN+DFN3+5,BGDBGM+DGM4+6,BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),BFD+BGD3+5+4+6,3+5+(1803)+(1805),180+(3+5),180+BFD,整理得:2BGD+BFD360【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.