资源描述
人教版中学七年级数学下册期末测试试卷含答案大全
一、选择题
1.9的算术平方根为()
A.9 B. C.3 D.
2.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )
A. B. C. D.
3.坐标平面内的下列各点中,在轴上的是( )
A. B. C. D.
4.下列命题是假命题的是( )
A.垂线段最短
B.内错角相等
C.在同一平面内,不重合的两条直线只有相交和平行两种位置关系
D.若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直
5.如图,直线,点,分别是,上的动点,点在上,,和的角平分线交于点,若,则的值为( ).
A.70 B.74 C.76 D.80
6.下列算式,正确的是( )
A. B. C. D.
7.如图,AB∥CD,将一块三角板(∠E=30°)按如图所示方式摆放,若∠EFH=25°,求∠HGD的度数( )
A.25° B.30° C.55° D.60°
8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动.其行走路线如图所示,第1次移动到,第2次移动到,…,第n次移动到,则的面积是( )
A. B. C. D.
九、填空题
9.若+=0,则xy=__________.
十、填空题
10.已知点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,那么a+b=_____.
十一、填空题
11.如图,分别作和的角平分线交于点,称为第一次操作,则_______;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则______.
十二、填空题
12.如图,己知AB∥CD.OE平分∠AOC,OE⊥OF,∠C=50°,则∠AOF的度数为___.
十三、填空题
13.如图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为______.
十四、填空题
14.对于这样的等式:若(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则﹣32a0+16a1﹣8a2+4a3﹣2a4+a5的值为_____.
十五、填空题
15.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.
十六、填空题
16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点(为正整数),则点的坐标是______.
十七、解答题
17.计算:(1)
(2)
十八、解答题
18.求下列各式中的x值:
(1)
(2)
十九、解答题
19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
二十、解答题
20.如图,在平面直角坐标系中,已知P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).
(1)请画出上述平移后的△A1B1C1,并写出点A1,C1的坐标;
(2)写出平移的过程;
(3)求出以A,C,A1,C1为顶点的四边形的面积.
二十一、解答题
21.已知a是的整数部分,b是的小数部分.
(1)求a,b的值;
(2)求的平方根.
二十二、解答题
22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.
(1)求原来正方形场地的周长;
(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.
二十三、解答题
23.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.
(1)如图1,求证:HG⊥HE;
(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;
(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.
二十四、解答题
24.(感知)如图①,,求的度数.小明想到了以下方法:
解:如图①,过点作,
(两直线平行,内错角相等)
(已知),
(平行于同一条直线的两直线平行),
(两直线平行,同旁内角互补).
(已知),
(等式的性质).
(等式的性质).
即(等量代换).
(探究)如图②,,,求的度数.
(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.
二十五、解答题
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据算术平方根的定义即可得.
【详解】
解:,
的算术平方根为3,
故选:C.
【点睛】
本题考查了算术平方根,熟记定义是解题关键.
2.D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其
解析:D
【分析】
根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.
【详解】
解:A、不能用平移变换来分析其形成过程,故此选项错误;
B、不能用平移变换来分析其形成过程,故此选项错误;
C、不能用平移变换来分析其形成过程,故此选项正确;
D、能用平移变换来分析其形成过程,故此选项错误;
故选:D.
【点睛】
本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.
3.A
【分析】
根据y轴上点的横坐标为0,即可判断.
【详解】
解:∵y轴上点的横坐标为0,
∴点符合题意.
故选:A.
【点睛】
本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为0.
4.B
【分析】
根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案.
【详解】
A、垂线段最短,正确,是真命题,不符合题意;
B、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;
C、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;
D、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是,所以互相垂直,不符合题意;
故选:B.
【点睛】
题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理.
5.C
【分析】
先由平行线的性质得到∠ACB=∠5+∠1+∠2,再由三角形内角和定理和角平分线的定义求出m即可.
【详解】
解:过C作CH∥MN,
∴∠6=∠5,∠7=∠1+∠2,
∵∠ACB=∠6+∠7,
∴∠ACB=∠5+∠1+∠2,
∵∠D=52°,
∴∠1+∠5+∠3=180°−52°=128°,
由题意可得GD为∠AGB的角平分线,BD为∠CBN的角平分线,
∴∠1=∠2,∠3=∠4,
∴m°=∠1+∠2+∠5=2∠1+∠5,∠4=∠1+∠D=∠1+52°,
∴∠3=∠4=∠1+52°,
∴∠1+∠5+∠3=∠1+∠5+∠1+52°=2∠1+∠5+52°=m°+52°,
∴m°+52°=128°,
∴m°=76°.
故选:C.
【点睛】
本题主要考查平行线的性质和角平分线的定义,关键是对知识的掌握和灵活运用.
6.A
【分析】
根据平方根、立方根及算术平方根的概念逐一计算即可得答案.
【详解】
A.,计算正确,故该选项符合题意,
B.,故该选项计算错误,不符合题意,
C.,故该选项计算错误,不符合题意,
D.,故该选项计算错误,不符合题意,
故选:A.
【点睛】
本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键.
7.C
【分析】
先根据三角形外角可求∠EHB=∠EFH+∠E=55°,根据平行线性质可得∠HGD=∠EHB=55°即可.
【详解】
解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°,
∴∠EHB=∠EFH+∠E=25°+30°=55°,
∵AB∥CD,
∴∠HGD=∠EHB=55°.
故选C.
【点睛】
本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.
8.C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详
解析:C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详解】
解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,
每四次一循环,每个循环,点向x轴的正方向前进2cm,
∴OA4n=2n,
∵2021=505×4+1,
∴点A2021在x轴上,且OA2021=505×2+1=1011,
∴△OA2A2021的面积=×1×1011=(cm2).
故选:C.
【点睛】
本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.
九、填空题
9.16
【分析】
根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解.
【详解】
∵+=0,
∴x−8=0,y−2=0,
∴x=8,y=2,
∴xy=.
故答案为16.
【点睛】
解析:16
【分析】
根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解.
【详解】
∵+=0,
∴x−8=0,y−2=0,
∴x=8,y=2,
∴xy=.
故答案为16.
【点睛】
本题考查非负数的性质:算术平方根,解题的关键是掌握算术平方根具有双重非负性:(1)被开方数a是非负数,即a≥0;(2)算术平方根本身是非负数,即≥0.
十、填空题
10.-3.
【分析】
关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.
【详解】
解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,
∴,
解得,
∴a+b=
解析:-3.
【分析】
关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b的值.
【详解】
解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,
∴,
解得,
∴a+b=﹣3,
故答案为:﹣3.
【点睛】
本题考查的是关于轴对称的两个点的坐标关系,掌握以上知识是解题的关键.
十一、填空题
11.90°
【分析】
过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠E
解析:90°
【分析】
过P1作P1Q∥AB,则P1Q∥CD,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,结合角平分线的定义可计算∠EP1F,再同理求出∠P2,∠P3,总结规律可得.
【详解】
解:过P1作P1Q∥AB,则P1Q∥CD,
∵AB∥CD,
∴∠AEF+∠CFE=180°,
∠AEP1=∠EP1Q,∠CFP1=∠FP1Q,
∵和的角平分线交于点,
∴∠EP1F=∠EP1Q+∠FP1Q=∠AEP1+∠CFP1=(∠AEF+∠CFE)=90°;
同理可得:∠P2=(∠AEF+∠CFE)=45°,
∠P3=(∠AEF+∠CFE)=22.5°,
...,
∴,
故答案为:90°,.
【点睛】
本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.
十二、填空题
12.115°
【分析】
要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解.
【详解】
解:∵AB∥CD
解析:115°
【分析】
要求∠AOF的度数,结合已知条件只需要求出∠AOE的度数,根据角平分线的定义可以得到∠AOE=∠AOC,再利用平行线的性质得到∠C=∠AOC即可求解.
【详解】
解:∵AB∥CD,∠C=50°,
∴∠C=∠AOC=50°,
∵OE平分∠AOC,
∴25°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠AOF=∠AOE+∠EOF=115°,
故答案为:115°.
【点睛】
本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.
十三、填空题
13.113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定
解析:113°
【分析】
如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°.
【详解】
解:如图,设∠B′FE=x,
∵纸条沿EF折叠,
∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,
∴∠BFC=∠BFE﹣∠CFE=x﹣21°,
∵纸条沿BF折叠,
∴∠C′FB=∠BFC=x﹣21°,
而∠B′FE+∠BFE+∠C′FE=180°,
∴x+x+x﹣21°=180°,解得x=67°,
∵A′D′∥B′C′,
∴∠A′EF=180°﹣∠B′FE=180°﹣67°=113°,
∴∠AEF=113°.
故答案为113°.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.
十四、填空题
14.-1.
【分析】
根据多项式的乘法得出字母的值,进而代入解答即可.
【详解】
解:(x+1)5=x5+5x4+10x3+10x2+5x+1,
∵(x+1)5=a0x5+a1x4+a2x3+a3x2+
解析:-1.
【分析】
根据多项式的乘法得出字母的值,进而代入解答即可.
【详解】
解:(x+1)5=x5+5x4+10x3+10x2+5x+1,
∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,
∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,
把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,
可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,
故答案为:﹣1
【点睛】
本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值.
十五、填空题
15.-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标
解析:-3或7
【分析】
由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.
【详解】
解:∵AB∥x轴,
∴B点的纵坐标和A点的纵坐标相同,都是4,
又∵A(-2,4),AB=5,
∴当B点在A点左侧的时候,B(-7,4),
此时B点的横纵坐标之和是-7+4=-3,
当B点在A点右侧的时候,B(3,4),
此时B点的横纵坐标之和是3+4=7;
故答案为:-3或7.
【点睛】
本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.
十六、填空题
16.【分析】
通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1
解析:
【分析】
通过观察可得,An每6个点的纵坐标规律:,0,,0,-,0,点An的横坐标规律:1,2,3,4,5,6,…,n,点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段,P运动每6秒循环一次,点P运动n秒的横坐标规律: ,1,,2,,3,…,,点P的纵坐标规律:,0,,0,0,0,…,确定P2021循环余下的点即可.
【详解】
解:∵图中是边长为1个单位长度的等边三角形,
∴
A2(1,0)
A4(2,0)
A6(3,0)
…
∴An中每6个点的纵坐标规律:,0,,0,﹣,0,
点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,1秒钟走一段,
P运动每6秒循环一次
点P的纵坐标规律:,0,,0,-,0,…,
点P的横坐标规律: ,1,,2,,3,…,,
∵2021=336×6+5,
∴点P2021的纵坐标为,
∴点P2021的横坐标为,
∴点P2021的坐标,
故答案为:.
【点睛】
本题考查点的规律,平面直角坐标系中点的特点及等边三角形的性质,确定点的坐标规律是解题的关键.
十七、解答题
17.(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
解析:(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
=4.
故答案为(1)0;(2)4.
【点睛】
本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.
十八、解答题
18.(1)x=-15;(2)x=8或x=-4
【分析】
(1)利用直接开立方法求得x的值;
(3)利用直接开平方法求得x的值.
【详解】
解:(1),
∴,
∴,
解得:x=-15;
(2),
∴,
∴
解析:(1)x=-15;(2)x=8或x=-4
【分析】
(1)利用直接开立方法求得x的值;
(3)利用直接开平方法求得x的值.
【详解】
解:(1),
∴,
∴,
解得:x=-15;
(2),
∴,
∴,
解得:x=8或x=-4.
【点睛】
本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.
十九、解答题
19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁
解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
二十、解答题
20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14.
【分析】
(1)根据点P的对应点P1(a+6,b+2)可分别
解析:(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14.
【分析】
(1)根据点P的对应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象;
(2)由(1)可直接进行求解;
(3)由(1)的图象可直接利用割补法进行求解面积.
【详解】
解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象:
∴由图象可得;
(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度;
(3)连接,如图所示:
∵点,
∴点在同一条直线上,且与x轴平行,
∴.
【点睛】
本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键.
二十一、解答题
21.(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b
解析:(1)a=2,b=;(2)±3
【分析】
(1)首先估算出的范围,从而得到和的范围,可得a,b值;
(2)将a,b的值代入计算,再求平方根即可.
【详解】
解:(1)∵,
∴,
∴,,
∴a=2,b=;
(2)
=
=
∴的平方根为±3.
【点睛】
此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键.
二十二、解答题
22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.
【分析】
(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;
(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为
解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.
【分析】
(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;
(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.
【详解】
解:(1)=20(m),4×20=80(m),
答:原来正方形场地的周长为80m;
(2)设这个长方形场地宽为3am,则长为5am.
由题意有:3a×5a=300,
解得:a=±,
∵3a表示长度,
∴a>0,
∴a=,
∴这个长方形场地的周长为 2(3a+5a)=16a=16(m),
∵80=16×5=16×>16,
∴这些铁栅栏够用.
【点睛】
本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.
二十三、解答题
23.(1)见解析;(2)见解析;(3)40°
【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H作HP∥AB,根据平行线的性质解答即可;
(3)过点H作HP∥AB,根据平行线的性质解答即可.
解析:(1)见解析;(2)见解析;(3)40°
【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H作HP∥AB,根据平行线的性质解答即可;
(3)过点H作HP∥AB,根据平行线的性质解答即可.
【详解】
证明:(1)∵AB∥CD,
∴∠AFE=∠FED,
∵∠AGH=∠FED,
∴∠AFE=∠AGH,
∴EF∥GH,
∴∠FEH+∠H=180°,
∵FE⊥HE,
∴∠FEH=90°,
∴∠H=180°﹣∠FEH=90°,
∴HG⊥HE;
(2)过点M作MQ∥AB,
∵AB∥CD,
∴MQ∥CD,
过点H作HP∥AB,
∵AB∥CD,
∴HP∥CD,
∵GM平分∠HGB,
∴∠BGM=∠HGM=∠BGH,
∵EM平分∠HED,
∴∠HEM=∠DEM=∠HED,
∵MQ∥AB,
∴∠BGM=∠GMQ,
∵MQ∥CD,
∴∠QME=∠MED,
∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,
∵HP∥AB,
∴∠BGH=∠GHP=2∠BGM,
∵HP∥CD,
∴∠PHE=∠HED=2∠MED,
∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),
∴∠GHE=∠2GME;
(3)过点M作MQ∥AB,过点H作HP∥AB,
由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,
由(2)可知:∠BGH=2∠MGH=10x,
∵∠AFE+∠BFE=180°,
∴∠AFE=180°﹣10x,
∵FK平分∠AFE,
∴∠AFK=∠KFE= ∠AFE,
即,
解得:x=5°,
∴∠BGH=10x=50°,
∵HP∥AB,HP∥CD,
∴∠BGH=∠GHP=50°,∠PHE=∠HED,
∵∠GHE=90°,
∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,
∴∠HED=40°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.
二十四、解答题
24.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
二十五、解答题
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
展开阅读全文