1、人教版七年级数学下册期末测试(含答案)一、选择题1如图,下列各组角中是同位角的是()A1和2B3和4C2和4D1和42春意盎然,在婺外校园里下列哪种运动不属于平移( )A树枝随着春风摇曳B值日学生拉动可移动黑板C行政楼电梯的升降D晚自修后学生两列队伍整齐排列笔直前行3在平面直角坐标系中位于第二象限的点是( )ABCD4下列说法中不正确的个数为()在同一平面内,两条直线的位置关系只有两种:相交和垂直有且只有一条直线垂直于已知直线如果两条直线都与第三条直线平行,那么这两条直线也互相平行从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离过一点,有且只有一条直线与已知直线平行A2个B3个C4个D
2、5个5如图,直线,则的度数为( )ABCD6对于有理数ab,定义mina,b的含义为:当ab时,mina,ba,当ba时,mina,bb例如:min1,22,已知min,aa,min,b,且a和b为两个连续正整数,则ab的立方根为( )A1B1C2D27已知:如图,ABEF,CDEF,BAC=30,则ACD=( )A100B110C120D1308在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上向右向下向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,第次移动到点,则点的坐标是( )ABCD九、填空题9已知非零实数a.b满足
3、|2a-4|+|b+2|+4=2a,则2a+b=_十、填空题10若点A(1m,1n)与点B(3,2)关于y轴对称,则(mn)2020的值是_十一、填空题11如图,BE是ABC的角平分线,AD是ABC的高,ABC=60,则AOE=_十二、填空题12如图,现将一块含有60角的三角板的顶点放在直尺的一边上,若12,那么1的度数为_十三、填空题13如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=30,则EFC的度数为_十四、填空题14已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数依此类推,那么的值是_十五、
4、填空题15已知ABx轴,A(-2,4),AB=5,则B点横纵坐标之和为_十六、填空题16在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位;其行走路线如图所示则点的坐标为_十七、解答题17计算下列各式的值:(1) (2)十八、解答题18求下列各式中的值:(1);(2);(3)十九、解答题19学习如何书写规范的证明过程,补充完整,并完成后面问题已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DEBA,AFDE求证:FDAC证明:DEBA(已知) BFD ( )又 AFDE (等量代换)FDCA( )模仿上面的证明过程,用另一
5、种方法证明FDAC二十、解答题20已知点P(3a4,a+2)(1)若点P在y轴上,试求P点的坐标;(2)若M(5,8),且PM/x轴,试求P点的坐标;(3)若点P到x轴,y轴的距离相等,试求P点的坐标二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小辉用来表示的小数部分,你同意小辉的表示方法吗?事实上,小辉的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即,的整数部分为2,小数部分为请解答:(1)的整数部分是_ ,小数部分是_ (2)如果的小数部分为,的整数部分为,求的值
6、二十二、解答题22如图1,用两个边长相同的小正方形拼成一个大的正方形(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为32,他能裁出吗?请说明理由二十三、解答题23已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点
7、K,若KFE:MGH13:5,求HED的度数二十四、解答题24如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3的速度沿顺时针方向旋转一周(1)几秒后与重合?(2)如图2,经过秒后,求此时的值(3)若三角板在转动的同时,射线也绕点以每秒6的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由二十五、解答题25如图所示,已知射线.点E、F在射线CB上,且满足,OE平分(1)求的度数;(2)若平行移动AB,那么的值是否随之发生变化?如果变
8、化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数若不存在,请说明理由.【参考答案】一、选择题1D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角【详解】A. 1和2是邻补角,不符合题意;B. 3和4是同旁内角,不符合题意;C. 2和4没有关系,不符合题意;D. 1和4是同位角,符合题意;故选D【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键2A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学
9、生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直解析:A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直前行是平移运动;故选A【点睛】此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符
10、合,故选:B【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可【详解】在同一平面内,两条直线的位置关系只有两种:相交和平行,故不正确;过直线外一点有且只有一条直线垂直于已知直线故不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行故正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离故不正确;过直线外一点,有且只有一条直线与已知直
11、线平行故不正确;不正确的有四个故选:C【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解5B【分析】记1顶点为A,2顶点为B,3顶点为C,过点B作BDl1,由平行线的性质可得3+DBC=180,ABD+(1801)=180,由此得到3+2+(1801)=360,再结合已知条件即可求出结果【详解】如图,过点B作BDl1,BDl1l2,3+DBC=180,ABD+(1801)=180,3+DBC+ABD+(1801)=360,即3+2+(1801)=360,又2+3=216,216+(1801)=360,1=36故选:B【点睛】本题考查了平行
12、线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键6A【分析】根据a,b的范围即可求出ab的立方根【详解】解:根据题意得:a,b,253036,56,a和b为两个连续正整数,a5,b6,ab1,1的立方根是1,故选:A【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键7C【分析】如图,过点C作,利用平行线的性质得到,则易求ACD的度数【详解】解:过点C作,则,故选:C【点睛】本题考查了平行线的性质该题通过作辅助线,将转化为(90)来求8B【分析】根据题意可得 , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标
13、,然后根据,可得:,即可求解【详解】解:由题意得: ,解析:B【分析】根据题意可得 , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,可得:,即可求解【详解】解:由题意得: , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环, ,点的纵坐标为1,由此得:,故选:B【点睛】本题主要考查了平面直角坐标系中点的坐标规律题坐标与旋转,解题的关键是理解题意找出规律解答问题九、填空题94【分析】首先根据算术平方根的被开方数0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0根据非负数的性质可分别求出a和b的值,即可求出2
14、a+b的值【详解】解:解析:4【分析】首先根据算术平方根的被开方数0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0根据非负数的性质可分别求出a和b的值,即可求出2a+b的值【详解】解:由题意可得a3,2a-40,已知等式整理得:|b+2|+=0,a=3,b=-2,2a+b=23-2=4故答案为4【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键十、填空题101【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=
15、3,1-n=2,m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案【详解】解:点A(1+m,1-n)与点B(-3,2)关于y轴对称,1+m=3,1-n=2,m=2,n=-1,(mn)2020=(2-1)2020=1;故答案为:1【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键十一、填空题1160【分析】先根据角平分线的定义求出DOB的度数,再由三角形外角的性质求出BOD的度数,由对顶角相等即可得出结论.【详解】BE是ABC的角平分线,ABC60,DOBA解析:60【分析】先根据角平分线的定义求出DOB的度数,再由三角形外角的
16、性质求出BOD的度数,由对顶角相等即可得出结论.【详解】BE是ABC的角平分线,ABC60,DOBABC6030,AD是ABC的高,ADC90,ADC是OBD的外角,BODADCOBD903060,AOEBOD60,故答案为60.【点睛】本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和.十二、填空题12【分析】根据题意知:,得出,从而得出,从而求算1【详解】解:如图:又12, ,解得: 故答案为: 【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解析:【分析】根据题意知:,得出,从而得出,从而求算1【详解】解:如图:又12, ,解得: 故答案为: 【点睛】
17、本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键十三、填空题13120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而解析:120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而AEB的度数可在RtABE中求得,由此可求出BEF的度数,即可得解【详解】解:RtABE中,ABE=30,AEB=60;由折叠的性质知:BEF=DEF;而BED=180-AEB=120,B
18、EF=60;由折叠的性质知:EBC=D=BCF=C=90,BECF,EFC=180-BEF=120故答案为:120【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题14【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值【详解】,每三个数一个循环,则+-3 -3-+解析:【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值【详解】,每三个数一个循环,则+-3 -3-+3=-3-+3故答案为:【点晴】本
19、题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值十五、填空题15-3或7【分析】由ABx轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案【详解】解:ABx轴,B点的纵坐标解析:-3或7【分析】由ABx轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案【详解】解:ABx轴,B点的纵坐标和A点的纵坐标相同,都是4,又A(-2,4),AB=5,当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B
20、点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解十六、填空题16(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用20204=505,可得出点A2021的坐标【详解】解:由图可知A4,A8都在x轴上,解析:(1010,1)【分析】根据图象先计算出A4和A8的坐标,进而得出点A4n的坐标为(2n,0),再用20204=505,可得出点A2021的坐标【详解】解:由图可知A4,A8都在x轴上,蚂
21、蚁每次移动1个单位,OA4=2,OA8=4,A4(2,0),A8(4,0),OA4n=4n2=2n,点A4n的坐标为(2n,0)20204=505,点A2020的坐标是(1010,0)点A2021的坐标是(1010,1)故答案为:(1010,1)【点睛】本题考查了规律型问题在点的坐标问题中的应用,数形结合并正确得出规律是解题的关键十七、解答题17(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考解析:(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)
22、利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可【详解】解:(1) (2) 【点睛】本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键十八、解答题18(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出解析:(1)0.2;(2);(3)5【分析】(1)直接利用立方根的性质计算得出答案;(2)直接将-3移项,合并再利用立方根的性质计算得出答案;(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值【详解】解
23、:(1)x3=0.008,则x=0.2;(2)x3-3= 则x3=3+故x3=解得:x=;(3)(x-1)3=64则x-1=4,解得:x=5【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键十九、解答题19(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等
24、和内错角相等两直线平行求解即可【详解】(1)证明:DEBA(已知) BFDFDE(两直线平行,内错角相等)又 AFDEABFD,(等量代换)FDCA(同位角相等,两直线平行)故答案为:FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行 (2)证明:DEBA(已知),ADEC(两直线平行,同位角相等),又 AFDE(已知),FDEDEC(等量代换),FDCA;(内错角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1)【分析】(1)根据y轴
25、上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相解析:(1)P(0,);(2)P(-22,8);(3)P(,)或P(-1,1)【分析】(1)根据y轴上的点的坐标特征:横坐标为0列方程求出a值即可得答案;(2)根据平行于x轴的直线上的点的纵坐标相等列方程求出a值即可得答案;(3)根据点P到x轴,y轴的距离相等可得,解方程求出a值即可得答案【详解】(1)点P在y轴上,P(0,)(2)PM/x轴,此时,P(-22,8)(3)若点P到x轴,y轴的距离相等,或,解得:或,当时,3a4=,a+2=,P(,),当时,3a4=-1,a+2=1,P(-1,1),综
26、上所述:P(,)或P(-1,1)【点睛】本题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质二十一、解答题21(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可【详解】解:(1),即45的整数部分为4,小数部分为4(2),解析:(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a,b然后代入代数式即可【详解】解:(1),即45的整数部分为4,小数部分为4(2),【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键二十二
27、、解答题22(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:解析:(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:(1)正方形纸片的面积为,正方形的边长,故答案为:(2)不能;根据题意设长方形的长和宽分别为和长方形面积为:,解得:,长方形的长边为,他不能裁出【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进
28、行算术平方根计算及无理数大小比较是解题的关键二十三、解答题23(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可解析:(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作M
29、QAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PHE2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10
30、x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键二十四、解答题24(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出AON=60,结合旋转速度可得时间t;(3)设AON
31、=3t,则AOC=30+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分MOB,由题意列出方程,解方程即可【详解】解:(1)303=10,10秒后ON与OC重合;(2)MNABBOM=M=30,AON+BOM=90,AON=60,t=603=20经过t秒后,MNAB,t=20秒(3)如图3所示:AON+BOM=90,BOC=BOM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,则AOC=30+6t,OC与OM重合,AOC+BOC=180,可得:(30+6t)+(90-3t)=180,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图
32、4所示:AON+BOM=90,BOC=COM,三角板绕点O以每秒3的速度,射线OC也绕O点以每秒6的速度旋转,设AON=3t,AOC=30+6t,BOM+AON=90,BOC=COM=BOM=(90-3t),由题意得:180-(30+6t)=( 90-3t),解得:t=秒,即经过秒OC平分MOB【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键二十五、解答题25(1)40;(2)的值不变,比值为;(3)OEC=OBA=60.【分析】(1)根据OB平分AOF,OE平分COF,即可得出EOB=EOF+FOB=
33、COA,从而得出答案;(2解析:(1)40;(2)的值不变,比值为;(3)OEC=OBA=60.【分析】(1)根据OB平分AOF,OE平分COF,即可得出EOB=EOF+FOB=COA,从而得出答案;(2)根据平行线的性质,即可得出OBC=BOA,OFC=FOA,再根据FOA=FOB+AOB=2AOB,即可得出OBC:OFC的值为1:2(3)设AOB=x,根据两直线平行,内错角相等表示出CBO=AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出OEC,然后利用三角形的内角和等于180列式表示出OBA,然后列出方程求解即可【详解】(1)CBOAC+COA=180C=100COA
34、=180-C=80FOB=AOB,OE平分COFFOB+EOF=(AOF+COF)=COA=40;EOB=40;(2)OBC:OFC的值不发生变化CBOAOBC=BOA,OFC=FOAFOB=AOBFOA=2BOAOFC=2OBCOBC:OFC=1:2(3)当平行移动AB至OBA=60时,OEC=OBA设AOB=x,CBAO,CBO=AOB=x,CBOA,ABOC,OAB+ABC=180,C+ABC=180OAB=C=100OEC=CBO+EOB=x+40,OBA=180-OAB-AOB=180-100-x=80-x,x+40=80-x,x=20,OEC=OBA=80-20=60【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键