资源描述
人教版七年级数学下册期末测试含答案大全
一、选择题
1.如图,下列说法正确的是( )
A.与是同位角 B.与是内错角
C.与是同旁内角 D.与是同位角
2.在下列图形中,不能通过其中一个三角形平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点A(1,﹣2021)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中是假命题的是( ).
A.等角的补角相等 B.平行于同一条直线的两条直线平行
C.对顶角相等 D.同位角相等
5.如图,,P为平行线之间的一点,若,CP平分∠ACD,,则∠BAP的度数为( )
A. B. C. D.
6.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.3 D.0.1333
7.将45°的直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=31°,则∠2的度数为( )
A.10° B.14° C.20° D.31°
8.如图,已知在平面直角坐标系中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2016+a2017+a2018的值为( )
A.1009 B.1010 C.1513 D.2521
九、填空题
9.若|y+6|+(x﹣2)2=0,则y x=_____.
十、填空题
10.点(3,0)关于y轴对称的点的坐标是_______
十一、填空题
11.若点A(9﹣a,3﹣a)在第二、四象限的角平分线上,则A点的坐标为_____.
十二、填空题
12.如图,,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为_____度.
十三、填空题
13.如图,将△ABC沿直线AC翻折得到△ADC,连接BD交AC于点E,AF为△ACD的中线,若BE=2,AE=3,△AFC的面积为2,则CE=_____.
十四、填空题
14.已知a,b为两个连续的整数,且,则的平方根为___________.
十五、填空题
15.若点P(2m+4,3m+3)在x轴上,则点P的坐标为________.
十六、填空题
16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.
十七、解答题
17.计算下列各题:
(1)+-
(2).
十八、解答题
18.求下列各式中的值:
(1);
(2);
(3).
十九、解答题
19.完成下面的证明:如图,点、、分别是三角形的边、、上的点,连接,,,,连接交于点,求证:.
证明:
∵(已知)
∴(_______________)
又∵(已知)
∴(______________)
∴(_____________)
∴(______________)
二十、解答题
20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2).
(1)在平面直角坐标系中画出△ABC;
(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;
(3)求△A′B′C′的面积.
二十一、解答题
21.阅读下面的文字,解答问题:
大家知道,是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差是小数部分.
又例如,因为,即,所以的整数部分为2,小数部分为.请解答:
(1)的整数部分为 ;小数部分为 ;
(2)如果的整数部分为a,的小数部分为b,求的值.
二十二、解答题
22.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?
二十三、解答题
23.如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.
(1)求证:∠CAB=∠MCA+∠PBA;
(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;
(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.
二十四、解答题
24.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时.
(1)当点P在N右侧时:
①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;
②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;
(2)若镜像,求的度数.
二十五、解答题
25.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.
【详解】
解:∵∠3与∠1是同位角,∠C与∠1是内错角,∠2与∠3是邻补角,∠B与∠3是同旁内角,
∴B选项正确,
故选:B.
【点睛】
此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
2.D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D
解析:D
【分析】
根据平移的性质即可得出结论.
【详解】
解:A、能通过其中一个三角形平移得到,不合题意;
B、能通过其中一个三角形平移得到,不合题意;
C、能通过其中一个三角形平移得到,不合题意;
D、不能通过其中一个三角形平移得到,上面的三角形需要由下面的三角形旋转才能得到,符合题意.
故选:D.
【点睛】
本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.
3.D
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:∵点A(1,-2021),
∴A点横坐标是正数,纵坐标是负数,
∴A点在第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据等角的补角,平行线的性质,对顶角的性质,进行判断.
【详解】
A. 等角的补角相等,是真命题,不符合题意;
B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;
C. 对顶角相等,是真命题,不符合题意;
D. 两直线平行,同位角相等,原命题是假命题,符合题意;
故选D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识.
5.A
【分析】
过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.
【详解】
解:如图,过P点作PMAB交AC于点M.
∵CP平分∠ACD,∠ACD=68°,
∴∠4=∠ACD=34°.
∵ABCD,PMAB,
∴PMCD,
∴∠3=∠4=34°,
∵AP⊥CP,
∴∠APC=90°,
∴∠2=∠APC-∠3=56°,
∵PMAB,
∴∠1=∠2=56°,
即:∠BAP的度数为56°,
故选:A.
【点睛】
此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.
6.C
【分析】
根据立方根的变化特点和给出的数据进行解答即可.
【详解】
解:∵≈1.333,
∴,
故选:C.
【点睛】
本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.
7.B
【分析】
根据平行线的性质,即可得出∠1=∠ADC=31°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ADC=30°,
又∵直角三角形ADE中,∠ADE=45°,
∴∠1=45°-31°=14°,
故选:B.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
8.B
【分析】
观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数
解析:B
【分析】
观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.
【详解】
解:由直角坐标系可知A(1,1),B(2,﹣1),C(3,2),D(4,﹣2),
……,
即a1=1,a2=1,a3=2,a4=﹣1,a5=3,a6=2,a7=4,a8=﹣2,
……,
所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,
偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,
∴a2016=﹣504,2018÷4=504……2,
∴a2018=505,
故 a2016+a2017+a2018=1010,
故选:B.
【点睛】
本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.
九、填空题
9.36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
解析:36
【解析】由题意得,y+6=0,x﹣2=0,
解得x=2,y=﹣6,
所以,yx=(﹣6)2=36.
故答案是:36.
十、填空题
10.(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴
解析:(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴对称的点的坐标为(-3,0).
故答案为:(-3,0).
【点睛】
本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标
解析:(3,﹣3).
【分析】
根据第二、四象限角平分线上点的坐标特征得到9﹣a+3﹣a=0,然后解方程即可.
【详解】
∵点P在第二、四象限角平分线上,
∴9﹣a+3﹣a=0,
∴a=6,
∴A点的坐标为(3,﹣3).
故答案为:(3,﹣3).
【点睛】
本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征.
十二、填空题
12.【分析】
根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果.
【详解】
∵AB∥CD,
∴∠CMF=∠
解析:
【分析】
根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果.
【详解】
∵AB∥CD,
∴∠CMF=∠1=57°,
∵MF平分∠CME,
∴∠CME=2∠CMF=114°,
∴∠EMD=180°-∠CME=66°,
故答案为:66.
【点睛】
此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.
十三、填空题
13.【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵
解析:【分析】
根据已知条件以及翻折的性质,先求得S四边形ABCD,根据S四边形ABCD,即可求得,进而求得
【详解】
∵AF为△ACD的中线,△AFC的面积为2,
∴S△ACD=2S△AFC=4,
∵△ABC沿直线AC翻折得到△ADC,
∴S△ABC=S△ADC,BD⊥AC,BE=ED,
∴S四边形ABCD=8,
∴,
∵BE=2,AE=3,
∴BD=4,
∴AC=4,
∴CE=AC﹣AE=4﹣3=1.
故答案为1.
【点睛】
本题考查了三角形中线的性质,翻折的性质,利用四边形的等面积法求解是解题的关键.
十四、填空题
14.±3
【分析】
分别算出a,b计算即可;
【详解】
∵a,b为两个连续的整数,且,
∴,
∴,
∴,,
∴,
∴的平方根为±3;
故答案是:±3.
【点睛】
本题主要考查了无理数的估算和求一个数的平
解析:±3
【分析】
分别算出a,b计算即可;
【详解】
∵a,b为两个连续的整数,且,
∴,
∴,
∴,,
∴,
∴的平方根为±3;
故答案是:±3.
【点睛】
本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键.
十五、填空题
15.(2,0)
【分析】
根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.
【详解】
解:∵点P(2m+4,3m+3)在x轴上,
∴3m+3=0,
∴m=﹣1,
∴2m+4=2,
∴点P
解析:(2,0)
【分析】
根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.
【详解】
解:∵点P(2m+4,3m+3)在x轴上,
∴3m+3=0,
∴m=﹣1,
∴2m+4=2,
∴点P的坐标为(2,0),
故答案为(2,0).
十六、填空题
16.(1,0)
【分析】
先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.
【详解】
解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G
解析:(1,0)
【分析】
先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.
【详解】
解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),
∴“凸”形ABCDEFGHP的周长为20,
2018÷20的余数为18,
∴细线另一端所在位置的点在P处,坐标为(1,0).
故答案为:(1,0).
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.
十七、解答题
17.(1)1 (2)
【详解】
试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;
试题解析:
(1)原式=;
(2)原式=-3-0-+0.5+
=
解析:(1)1 (2)
【详解】
试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;
试题解析:
(1)原式=;
(2)原式=-3-0-+0.5+
=
十八、解答题
18.(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出
解析:(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值.
【详解】
解:(1)x3=0.008,
则x=0.2;
(2)x3-3=
则x3=3+
故x3=
解得:x=;
(3)(x-1)3=64
则x-1=4,
解得:x=5.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.
十九、解答题
19.两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补
【分析】
根据平行线的性质与判定进行证明即可得到答案.
【详解】
证明:∵(已知)
∴(两直线平行,同位角相等)
解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补
【分析】
根据平行线的性质与判定进行证明即可得到答案.
【详解】
证明:∵(已知)
∴(两直线平行,同位角相等)
又∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
∴.(两直线平行,同旁内角互补)
【点睛】
本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
二十、解答题
20.(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′
解析:(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;
(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.
【详解】
解:(1)如图,△ABC为所作;
(2)如图,△A′B′C′为所作;
(3)△A′B′C′的面积=.
【点睛】
本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
二十一、解答题
21.(1)9,;(2)15
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵,即
∴的整数部分为9,小数部分为
(2)∵,即
∴的整数部
解析:(1)9,;(2)15
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵,即
∴的整数部分为9,小数部分为
(2)∵,即
∴的整数部分为5,小数部分为
∴,
【点睛】
此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键.
二十二、解答题
22.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小
解析:(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm2,
∴边长为: ;
根据题意设长方形长为 cm,宽为 cm,
由题:
则
长为
无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
二十三、解答题
23.(1)证明见解析;(2)证明见解析;(3)120°.
【分析】
(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)
解析:(1)证明见解析;(2)证明见解析;(3)120°.
【分析】
(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;
(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;
(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.
【详解】
解:(1)证明:如图1,过点A作AD∥MN,
∵MN∥PQ,AD∥MN,
∴AD∥MN∥PQ,
∴∠MCA=∠DAC,∠PBA=∠DAB,
∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,
即:∠CAB=∠MCA+∠PBA;
(2)如图2,∵CD∥AB,
∴∠CAB+∠ACD=180°,
∵∠ECM+∠ECN=180°,
∵∠ECN=∠CAB
∴∠ECM=∠ACD,
即∠MCA+∠ACE=∠DCE+∠ACE,
∴∠MCA=∠DCE;
(3)∵AF∥CG,
∴∠GCA+∠FAC=180°,
∵∠CAB=60°
即∠GCA+∠CAB+∠FAB=180°,
∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,
由(1)可知,∠CAB=∠MCA+∠ABP,
∵BF平分∠ABP,CG平分∠ACN,
∴∠ACN=2∠GCA,∠ABP=2∠ABF,
又∵∠MCA=180°﹣∠ACN,
∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,
∴∠GCA﹣∠ABF=60°,
∵∠AFB+∠ABF+∠FAB=180°,
∴∠AFB=180°﹣∠FAB﹣∠FBA
=180°﹣(120°﹣∠GCA)﹣∠ABF
=180°﹣120°+∠GCA﹣∠ABF
=120°.
【点睛】
本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.
二十四、解答题
24.(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,
解析:(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可.
【详解】
(1)①,
证明:∵,
∴,
∵,
∴,
∴;
②过点Q作QF∥CD,
∵,
∴,
∴,,
∴,
∵,
∴;
(2)如图,当点P在N右侧时,过点Q作QF∥CD,
同(1)得,,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,
如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,,
同理可得,,
∵,
∴,
∴,
∵,
∴,
∴;
综上,的度数为或.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.
二十五、解答题
25.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外
解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;
(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;
②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;
③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;
④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;
⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.
【详解】
(1)∵,(三角形内角和180°)
∴,(等式性质)
∵,
∴,
∴.(等量代换)
故答案为:三角形内角和180°;等量代换.
(2)如图,延长交于,
由三角形外角性质可知,
,,
∴.
(3)①如图①所示,连接BC,
,
根据(1)中结论,得,
∴,
∴;
②如图②所示,连接BC,
,
根据(1)中结论,得,
∴,
∵与的角平分线交于点,
∴,,
∴,
∵,,
∴,
∴,
∵,
∴;
③如图③所示,连接BC,
,
根据(1)中结论,得,
∵,,
∴,
∵与的十等分线交于点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
④如图④所示,设与的交点为点,
∵平分,平分,
∴,,
∵,,
∴,
∴,
∴,
即;
⑤∵,的角平分线交于点,
∴,
∴.
【点睛】
本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.
展开阅读全文