1、人教版中学七年级数学下册期末测试试卷(及答案)一、选择题19的算术平方根是()A-3B3CD2下列是四个汽车标志图案,其中可看作由“基本图案”经过平移得到的是( )ABCD3若点在轴上,则点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A垂线段最短B内错角相等C在同一平面内,不重合的两条直线只有相交和平行两种位置关系D若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直5如图,一副直角三角板图示放置,点在的延长线上,点在边上,则( )ABCD6下列各式中,正确的是( )A=4B=4CD7一副直角三角板如图所示摆放,它们的直角顶点重合于点,则(
2、)ABCD8如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A(0,2)B(4,0)C(0,2)D(4,0)九、填空题9若,则=_十、填空题10小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_.十一、填空题11如图,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,作PEAB于点E若PE2,则两平行线AD与BC间的距离为_十二、填空题12如图,则的度数为_十三、填空
3、题13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_十四、填空题14如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有_个十五、填空题15如果点P(m+3,m2)在x轴上,那么m_十六、填空题16如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动即(0,0)(0,1)(1,1)(1,0),那么第42秒时质点所在位置的坐标是_十七、解答题17计算题(1). (2);十八、解答题18求下列各式中x的值(1)4
4、x2250;(2)(2x1)364十九、解答题19完成下面推理过程,并在括号中填写推理依据:如图,ADBC于点D,EGBC于点G,E3,试说明:AD平分BAC证明:ADBC,EGBCADC 90(垂直定义) EG(同位角相等,两直线平行)1 ( )23( )又3E(已知) 2 AD平分BAC 二十、解答题20在平面坐标系中描出下列各点且标该点字母:(1)点,;(2)点在轴上,位于原点右侧,距离原点2个单位长度;(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度二十一、解答题21已知是的整数部分,是的小数部分,求代数式的平方根二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形
5、(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交
6、于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由二十四、解答题24已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E、F点,(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为AC上一点,请写出与之间的等量关系,并说明理由(3)将直角如图3位置摆放,若,延长AC交直线b于点Q,点P是射线GF上一动点,探究,与的数量关系,请直接写出结论二十五、解答题25已知,点为射线上一点(1)如图1,写出、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,求的度数【参考答案】一、选择题1B解析:B
7、【分析】根据算术平方根的概念可直接进行求解【详解】解:,9的算术平方根是3;故选B【点睛】本题主要考查算术平方根,熟练掌握求一个数的算术平方根是解题的关键2B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本图案”经过平移得到故选:B【点睛】本题考查解析:B【分析】根据平移的概念观察即可【详解】解:由“基本图案”经过旋转得到由“基本图案”经过平移得到由“基本图案”经过翻折得到不能由 “基本图案”经过平移得到故选:B【点睛】本题考查平移的概念,考查观察能力3D【分析】根据点在轴上,求得,从而求得点的坐标,进而判断
8、所在的象限【详解】在轴上,在第四象限,故选D【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解4B【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案【详解】A、垂线段最短,正确,是真命题,不符合题意;B、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等
9、,则四个角一定全相等,都是,所以互相垂直,不符合题意;故选:B【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理5B【分析】根据平行线的性质可知, ,由 即可得出答案。【详解】解:, 故答案是B【点睛】本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补.6C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键7C【分析】由AB/CO得出BAO=AOC,即可得出BO
10、D【详解】解:,故选:【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题8A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍解析:A【分析】利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍,时间相同,物体甲与物体乙的路程比为1:3,由题意知:第一次相遇物体甲与物体乙行的路程和为241,物体甲行的路程为246,物体
11、乙行的路程为2418,在DE边相遇;第二次相遇物体甲与物体乙行的路程和为242,物体甲行的路程为24212,物体乙行的路程为24236,在DC边相遇;第三次相遇物体甲与物体乙行的路程和为243,物体甲行的路程为24318,物体乙行的路程为24354,在BC边相遇;第四次相遇物体甲与物体乙行的路程和为244,物体甲行的路程为24424,物体乙行的路程为24472,在A点相遇;此时甲乙回到原出发点,则每相遇四次,两点回到出发点,202145051,故两个物体运动后的第2020次相遇地点的是点A,即物体甲行的路程为2416,物体乙行的路程为24118时,达到第2021次相遇,此时相遇点的坐标为:(0
12、,2),故选:A【点睛】本题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题九、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键十、填空题1021:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平
13、面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05故答案为21:05【点睛】本题考查镜面反射的原理与性质解决此类题应认真观察,注意技巧十一、填空题114【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与
14、BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案【详解】解:过点P作MNAD,ADBC,ABC的角平分线BP与BAD的角平分线AP相交于点P,PEAB于点E,APBP,PNBC,PM=PE=2,PE=PN=2,MN=2+2=4故答案为4十二、填空题1230【分析】过点C作CFAB,根据平行线的传递性得到CFDE,根据平行线的性质得到BCF=ABC,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到解析:30【分析】过点C作CFAB,根据平行线的传递性得到CFDE,根据平行线的性质得到BCF=ABC
15、,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到DCF=30,于是得到结论【详解】解:过点C作CFAB,ABDE,CFDE,BCF=ABC=70,DCF=180-CDE=40,BCD=BCF-DCF=70-40=30故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行十三、填空题13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行解析:145【分
16、析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行四边形,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AEFEFC,GEFAEFEFC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键十四、填空题143【分析】根据无理
17、数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解析:3【分析】根据无理数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键十五、填空题15【分析】根据x轴上的点的纵坐标等于0列式计算即可得解【详解】点P(m+3,m2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵坐标等于0列式计算即可得解【详解】点P(m+3,m
18、2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键十六、填空题16(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+48秒,到(0,3)时用了9秒,从(0,3)到(
19、3,0)有六个单位长度,则到(3,0)时用了9+615秒,以此类推到(4,0)用了16秒,到(0,4)用了16+824秒,到(0,5)用了25秒,到(5,0)用了25+1035秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6)【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键十七、解答题17(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.解析:(1)1;(2).【分析】(1)先根据绝对值的
20、性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.十八、解答题18(1)x;(2)x【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解【详解】解:(1)4x2250,4x225,x2,x;(2)(2x1)364解析:(1)x;(2)x【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解【详解】解:(1)4x2250,4x225,x2,x;(2)(2x1)364,2x14,2x3,x【点睛】本题考查了
21、利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键十九、解答题19;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已知条件解析:;两直线平等行,同位角相等;两直线平行,内错角相等;等量代换;角平分线定义【分析】根据ADBC,EGBC,可得,进而根据平行线的性质,两直线平行同位角相等,内错角相等,可得,由已知条件3E,等量代换即可的,即可证明AD平分BAC【详解】证明:ADBC,EGBCADC90(垂直定义)EG(同位角相等,两直线平行)1(两
22、直线平等行,同位角相等)23(两直线平行,内错角相等)又3E(已知)2(等量代换)AD平分BAC(角平分线的定义)故答案是:EGC;AD;E;两直线平等行,同位角相等;两直线平行,内错角相等;1;等量代换;角平分线定义【点睛】本题考查了垂线的定义,平行线的性质与判定,角平分线的定义,掌握以上定理性质是解题的关键二十、解答题20(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点 的坐标,然后解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内
23、描出各点即可;(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可【详解】解:(1)如图 , (2)点在轴上,位于原点右侧,距离原点2个单位长度,点 ;(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度,点 【点睛】本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键二十一、解答题21【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估算、实数解析:【分析】根据可得,即可得到的整数部分是3,小
24、数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可【详解】解:(1)由题意得
25、,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于解析:(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交
26、的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键二十四、解答题24(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在线段GF的延长线上时,140POQOPQ+PQF解析:(1)136;(2)AOG+NEF90,理由见解析;(3)当点P在GF上时,OPQ140POQ+PQF;当点P在
27、线段GF的延长线上时,140POQOPQ+PQF【分析】(1)如图1,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后利用ACP+BCP90即可求得答案;(2)如图2,作CPa,则CPab,根据平行线的性质可得AOGACP,BCP+CEF180,然后结合已知条件可得BCPNEF,然后利用ACP+BCP90即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PNOG,则NPOGEF,根据平行线的性质可推出OPQGOP+PQF,进一步可得结论;如图4,当点P在线段GF的延长线上时,同上面方法利用平行线的性质解答即可【详解】解:(1)如图1,作CPa,
28、CPab,AOGACP,BCP+CEF180,BCP180CEF,ACP+BCP90,AOG+180CEF90,AOG46,CEF136,故答案为136;(2)AOG+NEF90理由如下:如图2,作CPa,则CPab,AOGACP,BCP+CEF180,而NEF+CEF180,BCPNEF,ACP+BCP90,AOG+NEF90;(3)如图3,当点P在GF上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPQGOP+PQF,OPQ140POQ+PQF;如图4,当点P在线段GF的延长线上时,过点P作PNOG,NPOGEF,GOPOPN,PQFNPQ,OPNOPQ+QPN,GOP
29、OPQ+PQF,140POQOPQ+PQF【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键二十五、解答题25(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H解析:(1),证明见解析;(2)证明见解析;(3)【分析】(1)过E作EHAB,根据两直线平行,内错角相等,即可得出AED=AEH+DEH=EAF+EDG; (2)设CD与AE交于点H,根据EHG是DEH的外角,即可得出EHG=AED+E
30、DG,进而得到EAF=AED+EDG; (3)设EAI=BAI=,则CHE=BAE=2,进而得出EDI=+10,CDI=+5,再根据CHE是DEH的外角,可得CHE=EDH+DEK,即2=+5+10+20,求得=70,即可根据三角形内角和定理,得到EKD的度数【详解】解:(1)AED=EAF+EDG理由:如图1,过E作EHAB, ABCD, ABCDEH, EAF=AEH,EDG=DEH, AED=AEH+DEH=EAF+EDG; (2)证明:如图2,设CD与AE交于点H, ABCD, EAF=EHG, EHG是DEH的外角, EHG=AED+EDG, EAF=AED+EDG; (3)AI平分BAE, 可设EAI=BAI=,则BAE=2, 如图3,ABCD, CHE=BAE=2, AED=20,I=30,DKE=AKI, EDI=+30-20=+10, 又EDI:CDI=2:1, CDI=EDK=+5, CHE是DEH的外角, CHE=EDH+DEK, 即2=+5+10+20, 解得=70, EDK=70+10=80, DEK中,EKD=180-80-20=80【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解解题时注意:三角形的一个外角等于和它不相邻的两个内角的和