1、人教版初二上册压轴题数学检测试卷(一)1已知,A(0,a),B(b,0),点为x轴正半轴上一个动点,ACCD,ACD90(1)已知a,b满足等式a +b+b2+4b4求A点和B点的坐标;如图1,连BD交y轴于点H,求点H的坐标;(2)如图2,已知a+b=0,OCOB,作点B关于y轴的对称点E,连DE,点F为DE的中点,连OF和CF,请补全图形,探究OF与CF有什么数量和位置关系,并证明你的结论2如图,ACB和DCE均为等腰三角形,点A,D,E在同一直线上,连接BE(1)如图1,若CABCBACDECED50求证:ADBE;求AEB的度数(2)如图2,若ACBDCE90,CF为DCE中DE边上的
2、高,试猜想AE,CF,BE之间的关系,并证明你的结论3如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+0(1)求a,b的值;(2)以AB为边作RtABC,点C在直线AB的右侧,且ACB45,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CFBC交x轴于点F求证:CF=BC;直接写出点C到DE的距离4如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且ABO45,A(6,0),直线BC与直线AB关于轴对称.(1)求ABC的面积; (2)如图2,D
3、为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角BDE,求证:ABAE; (3)如图3,点E是轴正半轴上一点,且OAE30,AF平分OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OMNM的值最小?若存在,请写出其最小值,并加以说明.5如图,是等边三角形,点在上,点在的延长线上,且(1)如图甲,若点是的中点,求证: (2)如图乙,若点不的中点,是否成立?证明你的结论(3)如图丙,若点在线段的延长线上,试判断与的大小关系,并说明理由6我们不妨约定:把“有一组邻边相等”的凸四边形叫做“菠菜四边形”(1)如下:平行四边形,矩形,菱形,正方形,一定是
4、“菠菜四边形”的是_(填序号);(2)如图1,四边形ABCD为“菠菜四边形”,且BADBCD90,ADAB,AECD于点E,若AE4,求四边形ABCD的面积;(3)如图2,四边形ABCD为“菠菜四边形”,且ABAD,记四边形ABCD,BOC,AOD的面积依次为S,若求证:ADBC;在的条件下,延长BA、CD交于点E,记BCm,DCn,求证:7如图1,在ABC中,AEBC于E,AEBE,D是AE上一点,且DECE,连接BD,CD(1)判断与的位置关系和数量关系,并证明;(2)如图2,若将DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;(3)如图3,将(2)中的等
5、腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数8如图,在等边ABC中,线段AM为BC边上的中线动点D在直线AM上时,以CD为一边在CD的下方作等边CDE,连结BE(1)求CAM的度数;(2)若点D在线段AM上时,求证:ADCBEC;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB是否为定值?并说明理由【参考答案】2(1)A(0,2),B(-2,0);H(0,-2);(2)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y解析:(1)A(0,2),B(-2,0);H(0,-2);(2
6、)CFOF,CF=OF,证明见解析【分析】(1)利用绝对值、完全平方的非负性的应用,求出a、b的值,即可得到答案;过C作y轴垂线交BA的延长线于E,然后证明CEACBD,得到OB=OH,即可得到答案;(2)由题意,先证明DFGEFO,然后证明DCGACO,得到OCG是等腰直角三角形,再根据三线合一定理,即可得到结论成立【详解】解:(1),A(0,2),B(2,0);过C作x轴垂线交BA的延长线于E,OA=OB=2,AOB=90,AOB是等腰直角三角形,ABO=45,ECBC,BCE是等腰直角三角形,BC=EC,BCE=90=ACD,ACE=DCB,AC=DC,CEACBD,CBD=E=45,O
7、H=OB=2,H(0,2);(2)补全图形,如图:点B、E关于y轴对称,OB=OE,a+b=0,即OA=OB=OE延长OF至G使FG=OF,连DG,CG,OF=FG,OFE=DFG,EF=DFDFGEFODG=OE=OA,DGF=EOFDGOECDG=DCO;ACO+CAO=ACO+DCO=90,DCO=CAO;CDG=DCO=CAO;CD=AC,OA=DGDCGACOOC=GC,DCG=ACOOCG=90,COF=45,OCG是等腰直角三角形,由三线合一定理得CFOFOCF=COF=45,CF=OF;【点睛】本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,轴对称的性质,非负性的应用
8、,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题3(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全解析:(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出ACDBCE,由此即可得出结论AD=BE;结合中的ACDBCE可得出ADC=BEC,再通过角的计算即可算出AEB的度数;(2)根据等腰三角形的性质结合顶角
9、的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论【详解】(1)证明:CABCBACDECED50,ACBDCE18025080,ACBACD+DCB,DCEDCB+BCE,ACDBCE,ACB,DCE都是等腰三角形,ACBC,DCEC,在ACD和BCE中,ACDBCE(SAS),ADBE解:ACDBCE,ADCBEC,点A、D、E在同一直线上,且CDE50,ADC180CDE130,BEC130,BECCED+AEB,CED50,AEBBECCED80(2)结论:AE2CF+BE理由:ACB,DCE都是等腰直角三角形,CDECED
10、45,CFDE,CFD90,DFEFCF,ADBE,AEAD+DEBE+2CF【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键4(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=9解析:(1)a2,b-1;(2)满足条件的点C(2,1)或(1,-1);(3)证明见解析;1【分析】(1)可得(a2)2+0,由非负数的性质可得出答案;(2)分两种情况:BAC=90或ABC=90,根据等腰直角三角形的性质及全等
11、三角形的性质可求出点C的坐标;(3)如图3,过点C作CLy轴于点L,则CL=1=BO,根据AAS可证明BOECLE,得出BE=CE,根据ASA可证明ABEBCF,得出BE=CF,则结论得证;如图4,过点C作CKED于点K,过点C作CHDF于点H,根据SAS可证明CDECDF,可得BAE=CBF,由角平分线的性质可得CK=CH=1【详解】(1)a24a+4+0,(a2)2+0,(a-2)20,0,a-2=0,2b+2=0,a=2,b=-1;(2)由(1)知a=2,b=-1,A(0,2),B(-1,0),OA=2,OB=1,ABC是直角三角形,且ACB=45,只有BAC=90或ABC=90,、当B
12、AC=90时,如图1,ACB=ABC=45,AB=CB,过点C作CGOA于G,CAG+ACG=90,BAO+CAG=90,BAO=ACG,在AOB和BCP中, ,AOBCGA(AAS),CG=OA=2,AG=OB=1,OG=OA-AG=1,C(2,1),、当ABC=90时,如图2,同的方法得,C(1,-1);即:满足条件的点C(2,1)或(1,-1)(3)如图3,由(2)知点C(1,-1),过点C作CLy轴于点L,则CL=1=BO,在BOE和CLE中,BOECLE(AAS),BE=CE,ABC=90,BAO+BEA=90,BOE=90,CBF+BEA=90,BAE=CBF,在ABE和BCF中,
13、ABEBCF(ASA),BE=CF,CFBC;点C到DE的距离为1如图4,过点C作CKED于点K,过点C作CHDF于点H,由知BE=CF,BE=BC,CE=CF,ACB=45,BCF=90,ECD=DCF,DC=DC,CDECDF(SAS),BAE=CBF,CK=CH=1【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题5(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从
14、而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E作EFx轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2) 过E作EFx轴于点F,延长EA交y轴于点H,证DEFBDO,得出EFODAF,有,得出BAE90.(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,即可得解.【详解】解:(1)由已知条件得:AC=12,OB=6(2)过E作EFx轴于点F,延长EA交y轴于点H,
15、BDE是等腰直角三角形,DE=DB, BDE=90,EF轴,DF=BO=AO,EF=ODAF=EFBAE90(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,OA=6,OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.6(1)详见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC的度数,根据BD=DE即可解题;(2)过D作DFBC,交AB于F,解析:(1)详
16、见解析;(2)成立,理由详见解析;(3),证明详见解析.【分析】(1)根据等边三角形三线合一的性质即可求得DBC的度数,根据BD=DE即可解题;(2)过D作DFBC,交AB于F,证BFDDCE,推出DF=CE,证ADF是等边三角形,推出AD=DF,即可得出答案(3)如图3,过点D作DPBC,交AB的延长线于点P,证明BPDDCE,得到PD=CE,即可得到AD=CE【详解】证明:是等边三角形,为中点,,;(2)成立,如图乙,过作,交于,则是等边三角形,在和中,即如图3,过点作,交的延长线于点,是等边三角形,也是等边三角形,,,在和中,【点睛】本题考查了全等三角形的判定与性质,利用了等边三角形的判
17、定与性质,全等三角形的判定与性质,解决本题的关键是作出辅助线,构建全等三角形7(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,解析:(1) (2)16(3)见解析;见解析【分析】(1)根据菠菜四边形的定义结合各个特殊四边形的定义即可得出结论;(2)过A作,交CB的延长线于F,求出四边形AFCE是矩形,则,求出,得出,有全等的出AE=AF=3,求出,求出,代入求解即可;(3)记面积为,则,根据已知条件可得,进而可得,得出 由平分线的性质结合等腰三角形的性质可得BD平分,过
18、点D作于点H,作于点N,则DH=DN,则,由此即可得出结论(1)根据菱形于正方形的定义值,一定是菠菜四边形的是菱形与正方形,故答案为:(2)如图,过A作,交CB的延长线于F, 四边形AFCE是矩形则 四边形AFCE是正方形, 即四边形ABCD的面积为16(3)记,如图:作, AMAD四边形AMND为平行四边形ADMNADBCADBC又ADABBD平分如图:又【点睛】本题考查全等三角形的性质与判定,三角形的面积,角平分线的性质,对于同第登高的三角形的面积相等的推到是关键8(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出
19、,再判断出,最后计算即可【详解】解:(1)与的位置关解析:(1), ;(2), ;(3)【分析】(1)先判断出,再判定,再判断,(2)先判断出,再得到同理(1)可得结论;(3)先判断出,再判断出,最后计算即可【详解】解:(1)与的位置关系是:,数量关系是理由如下:如图1,延长交于点于,AEBC,(2)与的位置关系是:,数量关系是如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,即,AEBC,又,(3)如图,线段AC与线段BD交于点F,和是等边三角形,在和中,与的夹角度数为【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是
20、判断9(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3解析:(1)30;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论【详解】解:(1)是等边三角形,线段为边上的中线,故答案为:30;(2)与都是等边三角形,在和中,;(3)是定值,理由如下:当点在线段上时,如图1,由(2)可知,则,又,是等边三角形,线段为边上的中线,平分,即,当点在线段的延长线上时,如图2,与都是等边三角形,在和中,同理可得:,当点在线段的延长线上时,如图3,与都是等边三角形,在和中,同理可得:,综上,当动点在直线上时,是定值,【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键