资源描述
八年级下册数学秦皇岛数学期末试卷测试卷(含答案解析)
一、选择题
1.函数中,自变量x的取值范围是( )
A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣3
2.若线段a,b,c首尾顺次连接后能组成直角三角形,则它们的长度比可能为( )
A.2:3:4 B.3:4:5 C.4:5:6 D.5:6:7
3.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的是( )
A.OA=OC,AD//BC B.∠ABC=∠ADC,AD//BC
C.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO
4.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是,,则甲、乙两个同学的数学成绩比较稳定的是( )
A.甲 B.乙 C.甲和乙一样 D.无法确定
5.如图,的对角线、交于点,顺次连接各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是( )
A.1个 B.2个 C.3个 D.4个
6.如图,菱形ABCD中, ,则( )
A.30° B.25° C.20° D.15°
7.如图,在正方形ABCD的外侧作等边,对角线AC与BD相交于点O,连接AE交BD于点F,若,则AB的长度为( )
A.2 B. C. D.3
8.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=x的图象交于点A(m,﹣3),若kx﹣x>﹣b,则( )
A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣9
二、填空题
9.若,则_______________________.
10.如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____.
11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米.
12.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,若BC=2,∠CBE=45°,则AB=___.
13.如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为9.
14.如图,在四边形ABCD中,AB//CD,AB=CD,当AB=_________时,四边形ABCD为菱形.
15.将正方形,,按如图所示方式放置,点,,,…和点,,,…分别在直线和轴上,则点的坐标是______,的纵坐标是______.
16.在矩形ABCD中,,,将沿对角线BD对折得到,DE与BC交于F,则EF等于________.
三、解答题
17.计算:
(1);
(2);
(3)解方程组;
(4)解方程组.
18.如图,货船和快艇分别从码头A同时出发.其中,货船沿着北偏西54°方向以15海里/小时的速度匀速航行,快艇沿着北偏东36°方向以36海里/小时的速度航行,1小时后.两船分别到达B、C点.求B、C两点之间的距离.
19.如图所示,在的方格纸中,每个小正方形的边长均为1,线段的端点、均在小正方形的顶点上.
(1)在图中画出以为边的菱形,菱形的面积为8;
(2)在图中画出腰长为5的等腰三角形,且点在小正方形顶点上;
(3)连接,请直接写出线段的长.
20.如图,的对角线的垂直平分线与、分别交于、,垂足为点.
(1)求证:四边形是菱形.
(2)若,,,则的面积为 .
21.先阅读下面的解题过程,然后再解答,形如的化简,我们只要找到两个数a,b,使,,即,,那么便有:.
例如化简:
解:首先把化为,
这里,,
由于,,
所以,
所以
(1)根据上述方法化简:
(2)根据上述方法化简:
(3)根据上述方法化简:
22.亮亮奶茶店生产、两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现种奶茶每杯生产时间为4分钟,种奶茶每杯生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟.
(1)设每天生产种奶茶杯,生产种奶茶杯,求与之间的函数关系式;
(2)由于种奶茶比较受顾客青睐,亮亮决定每天生产种奶茶不少于73杯,那么不同的生产方案有多少种?
(3)在(2)的情况下,若种奶茶每杯利润为3元,种奶茶每杯利润为1元,求亮亮每天获得的最大利润.
23.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
24.如图,,是直线与坐标轴的交点,直线过点,与轴交于点.
(1)求,,三点的坐标.
(2)当点是的中点时,在轴上找一点,使的和最小,画出点的位置,并求点的坐标.
(3)若点是折线上一动点,是否存在点,使为直角三角形,若存在,直接写出点的坐标;若不存在,请说明理由.
25.等腰Rt△ABC,CA=CB,D在AB上,CD=CE,CD⊥CE.
(1)如图1,连接BE,求证:AD=BE.
(2)如图2,连接AE,CF⊥AE交AB于F,T为垂足,
①求证:FD=FB;
②如图3,若AE交BC于N,O为AB中点,连接OC,交AN于M,连FM、FN,当,求OF2+BF2的最小值.
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据二次根式的意义,被开方数是非负数即可求解.
【详解】
解:根据题意得:x+3≥0,
解得x≥﹣3.
故自变量x的取值范围是x≥﹣3.
故选D.
【点睛】
本题主要考查了二次根式有意义的条件,自变量的取值范围,解题的关键在于能够熟练掌握二次根式有意义的条件.
2.B
解析:B
【分析】
根据勾股定理的逆定理对各选项进行逐一判断即可.
【详解】
解:A、∵22+32≠42,∴不能够成直角三角形,故本选项不符合题意;
B、∵32+42=52,∴能够成直角三角形,故本选项符合题意;
C、∵52+42≠62,∴不能够成直角三角形,故本选项不符合题意;
D、∵52+62≠72,∴不能够成直角三角形,故本选项不符合题意.
故选:B.
【点睛】
本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3.D
解析:D
【解析】
【分析】
平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形;根据平行四边形的判定即可解答.
【详解】
解:∵
∴,
在△ADO和△CBO中
∴△ADO全等△CBO
∴AD=CD
∴四边形ABCD是平行四边形.
此选项A正确;
∵
∴
又∵,
∴
∴AB∥CD
∴四边形ABCD是平行四边形.
此选项B正确;
∵AB=CD,AD=BC
∴四边形ABCD是平行四边形.
此选项C正确;
根据∠ABD=∠ADB,∠BAO=∠DCO不能判断四边形ABCD是否为平行四边形
∴选项D错误.
故选D.
【点睛】
本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.
4.A
解析:A
【解析】
【分析】
平均成绩相同情况下,方差越小越稳定即可求解.
【详解】
解:∵甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,
方差分别是,,,
∴甲同学的数学成绩比较稳定.
故选择A.
【点睛】
本题考查用平均数,方差进行决策,掌握平均数是集中趋势的物理量,方差是离散程度的物理量,方差越小波动越小,方差越大波动越大越不稳定是解题关键.
5.C
解析:C
【分析】
根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.
【详解】
解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
①新的四边形成为矩形,符合条件;
②四边形是平行四边形,.
.
根据等腰三角形的性质可知.所以新的四边形成为矩形,符合条件;
③四边形是平行四边形,.
.
.
四边形是矩形,连接各边中点得到的新四边形是菱形,不符合条件;
④,
,即平行四边形的对角线互相垂直,
新四边形是矩形.符合条件.所以①②④符合条件.
故选:.
【点睛】
本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键.
6.D
解析:D
【解析】
【分析】
直接利用菱形的性质得出,,进而结合平行四边形的性质得出答案.
【详解】
解:四边形是菱形,
,,
,
,
.
故选:D.
【点睛】
此题主要考查了菱形的性质,正确得出的度数是解题关键.
7.B
解析:B
【解析】
【分析】
先根据正方形和等边三角形的性质证明△ADE是等腰三角形,求出∠DAE=∠DEA,再求出∠OAF=30°,在直角三角形OAF中即可得出结论.
【详解】
解:∵四边形ABCD是正方形,△CDE是等边三角形,
∴AD=CD,∠ADC=90°,DC=DE,∠CDE=∠DEC=60°,∠DAC=45°,AC⊥BD,
∴AD=DE,∠ADE=90°+60°=150°,∠AOD=90°,
∴∠DAE=∠DEA=(180°−150°)=15°,∠OAF=45°−15°=30°,
∴AF=2OF=2,
∴OA= ==,
∴AB=OA=,
故选:B.
【点睛】
本题考查了正方形的性质和等边三角形的性质、含30°角的直角三角形的性质以及等腰三角形的判定方法;根据正方形和等边三角形的性质弄清各个角之间的关系是解决问题的关键.
8.D
解析:D
【分析】
先利用正比例函数解析式,确定A点坐标;然后利用函数图像,写出一次函数y=kx+b(k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.
【详解】
解:把A(m,﹣3)代入y=x得m=﹣3,解得m=﹣9,
所以当x>﹣9时,kx+b>x,
即kx﹣x>﹣b的解集为x>﹣9.
故选D.
【点睛】
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、填空题
9.
【解析】
【分析】
先由二次根式有意义可得从而依次求解的值,可得答案.
【详解】
解:
解得:
故答案为:
【点睛】
本题考查的是二次根式有意义的条件,一元一次不等式组的解法,掌握二次根式有意义的条件是解题的关键.
10.A
解析:12cm2
【解析】
【分析】
利用菱形的面积公式可求解.
【详解】
解:因为菱形的对角线互相垂直平分,
∵AC=cm,BD=cm,
则菱形ABCD的面积是cm2.
故答案为12cm2.
【点睛】
此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.
11.3
【解析】
【分析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x米,则斜边为(8-x)米.利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面x米,则斜边为(8-x)米,
根据勾股定理得:x2+42=(8-x)2
解得:x=3.
∴折断处离地面高度是3米,
故答案为:3.
【点睛】
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
12.D
解析:2
【分析】
由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,进而求得AE=AB=2.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC.
∴∠DEC=∠BCE.
∵EC平分∠DEB,
∴∠DEC=∠BEC.
∴∠BEC=∠ECB.
∴BE=BC=2,
∵四边形ABCD是矩形,
∴∠A=∠ABC=90°,
∵∠CBE=45°,
∴∠ABE=90°-45°=45°,
∴∠ABE=∠AEB=45°.
∴AB=AE==2.
故答案为:2.
【点睛】
本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.
13.E
解析:(﹣4,3).
【分析】
求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.
【详解】
解:∵点E(﹣8,0)在直线y=kx+6上,
∴﹣8k+6=0,
∴k=,
∴y=x+6,
∴P(x, x+6),
由题意:×6×(x+6)=9,
∴x=﹣4,
∴P(﹣4,3),
故答案为(﹣4,3).
【点睛】
本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
14.B
解析:BC(答案不唯一)
【分析】
首先根据AB∥CD,AB=CD可得四边形ABCD是平行四边形,再根据一组邻边相等的平行四边形是菱形可得添加条件AB=AD或AB=BC.
【详解】
解:可添加的条件为AB=AD或BC.
∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵AD=AB(或AB=BC),
∴四边形ABCD为菱形.
故答案是:AD或BC.
【点睛】
本题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
15.【分析】
先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标
【详解】
当时,
四边形是正方形
当时,
四边形是
解析:
【分析】
先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标
【详解】
当时,
四边形是正方形
当时,
四边形是正方形
,
同理可得:;
……
点的坐标为
,
故答案为:①②
【点睛】
本题考查了一次函数的性质,正方形性质,找到点坐标的规律是解题的关键.
16.【分析】
根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值.
【详解】
解:由折叠可知:
AB=BE=CD=3,
解析:
【分析】
根据折叠的性质和矩形的性质得到BF=DF,设BF=DF=x,在△CDF中,利用勾股定理列出方程,求出x值,得到DF,即可计算EF的值.
【详解】
解:由折叠可知:
AB=BE=CD=3,∠E=∠A=90°,DE=AD=4,∠ADB=∠EDB,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ADB=∠CBD,
∴∠CBD=∠EDB,
∴BF=DF,设BF=DF=x,
则CF=4-x,在△CDF中,
,即,
解得:x=,即DF=,
∴EF=DE-DF==,
故答案为:.
【点睛】
本题主要考查了矩形的性质,翻折的性质,勾股定理,等角对等边,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程.
三、解答题
17.(1);(2);(3);(4)
【分析】
(1)根据二次根式的性质化简各项,然后再合并同类项即可;
(2)先结合平方差公式和完全平方公式计算,再去括号即可;
(3)利用代入消元法求解即可;
(4)利
解析:(1);(2);(3);(4)
【分析】
(1)根据二次根式的性质化简各项,然后再合并同类项即可;
(2)先结合平方差公式和完全平方公式计算,再去括号即可;
(3)利用代入消元法求解即可;
(4)利用加减消元法求解即可.
【详解】
解:(1)原式
;
(2)原式
;
(3)
由②可得:,
将代入①得:,
解得:,
∴,
∴原方程组解为:;
(4)
由①×4-②×3可得:,
解得:,
将代入①可得:,
解得:,
∴原方程组解为:.
【点睛】
本题考查二次根式的混合运算,解二元一次方程组等,掌握基本解法,并熟练运用乘法公式是解题关键.
18.B、C两点之间的距离为海里
【分析】
根据题意可知,然后根据勾股定理计算即可.
【详解】
解:根据题意可知,
1小时后,海里,海里,
在中,
海里,
∴B、C两点之间的距离为海里.
【点睛】
本题考
解析:B、C两点之间的距离为海里
【分析】
根据题意可知,然后根据勾股定理计算即可.
【详解】
解:根据题意可知,
1小时后,海里,海里,
在中,
海里,
∴B、C两点之间的距离为海里.
【点睛】
本题考查了方向角以及勾股定理,读懂题意,得出是关键.
19.(1)见解析;(2)见解析;(3).
【解析】
【分析】
(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;
(2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾
解析:(1)见解析;(2)见解析;(3).
【解析】
【分析】
(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;
(2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾股定理找出E点即可;
(3)利用勾股定理进行相应的计算即可得到答案.
【详解】
解:(1) 根据菱形的性质:菱形的四边都相等,菱形的面积为8,画出的图形如下图所示
(2)如图所示
∴AB为等腰三角形ABE的底
∴AE=BE=5
∴下图即为所求
(3)如图所示,连接EC
则由题意得
【点睛】
本题主要考查了应用设计与作图,正确利用网格结合勾股定理是解题的关键.
20.(1)见解析;(2)18
【分析】
(1)由四边形ABCD是平行四边形易证△AOE≌△COF,从而可得OE=OF,所以四边形AFCE是平行四边形,又EF⊥AC,根据菱形的判定定理即可得证;
(2)由
解析:(1)见解析;(2)18
【分析】
(1)由四边形ABCD是平行四边形易证△AOE≌△COF,从而可得OE=OF,所以四边形AFCE是平行四边形,又EF⊥AC,根据菱形的判定定理即可得证;
(2)由(1)可求三角形的面积,又,从而可得三角形的面积,则的面积即可求解.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AEFC.
∴∠EAO=∠FCO,∠AEO=∠CFO.
∵EF平分AC,
∴OA=OC.
∴△AOE≌△COF.
∴OE=OF.
∴四边形AFCE是平行四边形.
又∵EF⊥AC,
∴四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形).
(2)∵四边形是菱形,,,
∴三角形的面积为,
∵,
∴三角形的面积等于三角形的面积的一半,即三角形的面积为,
∴三角形的面积为,
∴的面积等于三角形的面积的2倍,即的面积为.
故答案为:18.
【点睛】
本题考查了菱形的判定及平行四边形面积的求法,解题的关键是熟练掌握菱形的判定定理.
21.(1);(2);(3)
【解析】
【分析】
根据题意把题目中的无理式转化成的形式,然后仿照题意化简即可.
【详解】
解:(1)∵,
∴,,
∵,,
∴,,
∴;
(2)∵,
∴,,
∵,,
∴,,
解析:(1);(2);(3)
【解析】
【分析】
根据题意把题目中的无理式转化成的形式,然后仿照题意化简即可.
【详解】
解:(1)∵,
∴,,
∵,,
∴,,
∴;
(2)∵,
∴,,
∵,,
∴,,
∴.
(3)∵,
∴,,
∵,,
∴,,
∴.
【点睛】
本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.
22.(1);(2)3种;(3)227元
【分析】
(1)依据每天生产的时间为300分钟列出函数关系式即可;
(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可;
(3)列出利润与的函数关
解析:(1);(2)3种;(3)227元
【分析】
(1)依据每天生产的时间为300分钟列出函数关系式即可;
(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可;
(3)列出利润与的函数关系式,然后依据一次函数的性质求解即可.
【详解】
(1)∵每天生产的时间为300分钟,
由题意得:,
(2)由题意得:
解得:
为整数,,74,75
∴不同的生产方案有3种.
(3)设每天的利润为元,则
即
,随的增大而减小
∴当时,取最大值,
此时(元)
答:每天获得的最大利润为227元
【点评】
本题主要考查的是一次函数的应用,列出关于的不等式组是解题的关键.
23.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.
【分析】
(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得
解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.
【分析】
(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;
(2)先判断出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论;
(3)方法1:先判断出最大时,的面积最大,进而求出,,即可得出最大,最后用面积公式即可得出结论.方法2:先判断出最大时,的面积最大,而最大是,即可得出结论.
【详解】
解:(1)点,是,的中点,
,,
点,是,的中点,
,,
,,
,
,
,
,
,
,
,
,
,
,
故答案为:,;
(2)是等腰直角三角形.
由旋转知,,
,,
,
,,
利用三角形的中位线得,,,
,
是等腰三角形,
同(1)的方法得,,
,
同(1)的方法得,,
,
,
,
,
,
,
是等腰直角三角形;
(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,
最大时,的面积最大,
且在顶点上面,
最大,
连接,,
在中,,,
,
在中,,,
,
.
方法2:由(2)知,是等腰直角三角形,,
最大时,面积最大,
点在的延长线上,
,
,
.
【点睛】
此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大.
24.(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125.
【解析】
【分析】
(1)分别令x=0,y=0即可确定A、B
解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,点的坐标为或.
【解析】
【分析】
(1)分别令x=0,y=0即可确定A、B的坐标,然后确定直线BC的解析式,然后再令y=0,即可求得C的坐标;
(2)先根据中点的性质求出D的坐标,然后再根据轴对称确定的坐标,然后确定DB1的解析式,令y=0,即可求得E的坐标;
(3)分别就D点在AB和D点BC上两种情况进行解答即可.
【详解】
解:(1)在中,
令,得,
令,得,
,.
把代入,,
得
直线为:.
在中,
令,得,
点的坐标为;
(2)如图点为所求
点是的中点,,.
.
点关于轴的对称点的坐标为.
设直线的解析式为.
把,代入,
得.
解得,.
故该直线方程为:.
令,得点的坐标为.
(3)存在,点的坐标为或.
①当点在上时,由
得到:,
由等腰直角三角形求得点的坐标为;
②当点在上时,如图,设交轴于点.
在与中,
.
,
点的坐标为,
易得直线的解析式为,
与组成方程组,
解得.
交点的坐标为
【点睛】
本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键.
25.(1)见解析;(2)①见解析;②
【分析】
(1)利用SAS证明△ACD≌△BCE,从而利用全等三角形的性质即可得出结论;
(2)①过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,首
解析:(1)见解析;(2)①见解析;②
【分析】
(1)利用SAS证明△ACD≌△BCE,从而利用全等三角形的性质即可得出结论;
(2)①过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,首先证明△ACT≌△BCG及△DCH≌△ECT,得到CT=BG,CT=DH,通过等量代换得出DH=BG,再证明△DHF≌△BGF,则可证明结论;
②首先利用等腰三角形的性质和ASA证明△AOM≌△COF,则有OM=OF,然后利用等腰直角三角形的性质得出FK=BF,然后利用三角形的面积得出OF×BF=10,最后利用平方的非负性和完全平方公式求解即可.
【详解】
证明:(1)∵△ABC是等腰直角三角形,AC=BC,
∴∠ACB=90°,
∵CD⊥CE,
∴∠ACB=∠DCE=90°,
∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)①如图2,过点D作DH⊥CF于H,过点B作BG⊥CF,交CF的延长线于G,
∵CF⊥AE,
∴∠ATC=∠ATF=90°,
∴∠ACT+∠CAT=90°,
又∵∠ACT+∠BCG=90°,
∴∠CAT=∠BCG,
在△ACT和△CBG中,
,
∴△ACT≌△CBG(AAS),
∴CT=BG,
同理可证△DCH≌△ECT,
∴CT=DH,
∴DH=BG,
在△DHF和△BGF中,
,
∴△DHF≌△BGF(AAS),
∴DF=BF;
②如图3,过点F作FK⊥BC于K,
∵等腰Rt△ABC,CA=CB,点O是AB的中点,
∴AO=CO=BO,CO⊥AB,∠ABC=45°,
∴∠OCF+∠OFC=90°,
∵AT⊥CF,
∴∠ATF=90°,
∴∠OFC+∠FAT=90°,
∴∠FAT=∠OCF,
在△AOM和△COF中,
,
∴△AOM≌△COF(ASA),
∴OM=OF,
又∵CO⊥AO,
∴∠OFM=∠OMF=45°,,
∴∠OFM=∠ABC,MF=OF,
∴MFBC,
∴∠MFK=∠BKF=90°,
∵∠ABC=45°,FK⊥BC,
∴∠ABC=∠BFK=45°,
∴FK=BK,
∵,
∴FK=BF,
∵S△FMN=5,
∴×MF×FK=5,
∴OF×BF=10,
∴OF×BF=10,
∵(BF﹣OF)2≥0,
∴BF2+OF2﹣2BF×OF≥0,
∴BF2+OF2≥2×10=20,
∴BF2+OF2的最小值为20.
【点睛】
本题主要考查全等三角形的判定及性质,等腰直角三角形的性质与判定,平行线的性质与判定,三角形面积,完全平方公式等等,掌握等腰直角三角形的性质与判定和全等三角形的判定方法及性质是解题的关键.
展开阅读全文