收藏 分销(赏)

八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc

上传人:精*** 文档编号:1849613 上传时间:2024-05-10 格式:DOC 页数:28 大小:915.04KB
下载 相关 举报
八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc_第1页
第1页 / 共28页
八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc_第2页
第2页 / 共28页
八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc_第3页
第3页 / 共28页
八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc_第4页
第4页 / 共28页
八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、八年级下册数学义乌数学期末试卷测试卷(含答案解析)一、选择题1要使式子有意义,则x的值可以为( )A6B0C2D2下列各组数据能组成直角三角形的一组是( )A,B,C,D,3如图,在四边形中,对角线和相交于点,下列条件不能判断四边形是平行四边形的是( )A,B,C,D,4为迎接建党一百周年,某班开展“我最想看的红色电影”投票活动,参选的五部电影的得票数分别是9,10,11,11,8,则这组得票数据的中位数,众数分别是()A10,11B11,10C11,11D10.5,115三角形三边长分别是6,10,8,则它的最长边上的高为( )A6B10C8D4.86如图,菱形纸片ABCD的边长为a,ABC

2、60,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE2BE,则六边形AEFCHG面积的是( )Aa2Ba2Ca2Da27如图,在中,点为边上任意一点过点分别作于点,于点,则线段的最小值是( )A2B2.4C3D48如图,在平面直角坐标系中,点,和,分别在直线和轴上,是以,为顶点的等腰直角三角形如果点,那么点的纵坐标是( )ABCD二、填空题9二次根式中字母x的取值范围是_10如图,菱形的对角线,相交于点,已知,菱形的面积为24,则的长为_11如图,一名滑雪运动员沿着坡比为的滑道,从A滑行至B,已知米,则这名滑雪运动员的高度下降了_米12如图,点在矩形的对角线上

3、,且不与点重合,过点分别作边的平行线,交两组对边于点和四边形和四边形都是矩形并且面积分别为S1,S2,则S1,S2之间的关系为_13一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长cm,写出挂重后的弹簧长度y(cm)与挂重 x(kg)之间的函数关系式并标明 x 的取值范围_14在矩形ABCD中,B的平分线BE与AD交于点E,BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=_.(结果保留根号)15将正方形,按如图所示方式放置,点,和点,分别在直线和轴上,则点的坐标是_,的纵坐标是_16如图,在RtACB中,ACB90,BC6,AC9.折叠ACB

4、,使点A与BC的中点D重合,折痕交AB于E,交AC于点F,则CF_三、解答题17计算(1)(2)18九章算术是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系,“折竹抵地”问题源自九章算术中:“今有竹高一丈,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ACB90,AC+AB10尺,BC=4尺,求AC的长19如图,正方形网格中的ABC,若小方格边长为1 (1)判断ABC是什么形状?并说明理由(2)求AC边上的高20如图,在平行四边形ABCD中,ABC的平分线BE交AD于点E,点F是BC边上的一点,且BFAB,连接EF(1)求证:四边形ABFE是菱形;(2)连接AF,交B

5、E于点O,若AB5,BE+AF14,求菱形ABFE的面积21我们规定,若ab2,则称a与b是关于1的平衡数(1)若3与是关于1的平衡数,5与是关于1的平衡数,求,的值;(2)若(m)(1)2n3(1),判断m与5n是否是关于1的平衡数,并说明理由22某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间经与两个专卖店商谈,优惠方法如下:甲店:购买电脑打八折;乙店:先赠一台电脑,其余电脑打九折优惠设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元)(1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式;(2)对x的取值情况进行分析,说明这所学校购

6、买哪家电脑更合算?23已知:如图,平行四边形ABCD中,AB5,BD8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CECF,AEAF(1)求证:四边形ABCD是菱形;(2)设BEx,AFy,求y关于x的函数解析式,并写出定义域;(3)如果AE5,点P在直线AF上,ABP是以AB为腰的等腰三角形,那么ABP的底边长为 (请将答案直接填写在空格内)24如图,已知点、,线段且点C在y轴负半轴上,连接(1)如图1,求直线的解析式;(2)如图1,点P是直线上一点,若,求满足条件的点P坐标;(3)如图2,点M为直线上一点,将点M水平向右平移6个单位至点N,连接、,求的最小值

7、及此时点N的坐标25如图,在RtABC中,ACB90,B30,AB20点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQAB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与RtABC重叠部分图形的面积为S(S0),点P的运动时间为t秒(1)BC的长为 ;用含t的代数式表示线段PQ的长为 ;(2)当QM的长度为10时,求t的值;(3)求S与t的函数关系式;(4)当过点Q和点N的直线垂直于RtABC的一边时,直接写出t的值【参考答案】一、选择题1D解析:D【分析】

8、根据二次根式有意义的条件列出不等式,解不等式即可【详解】解:由题意得:x30,解得:x3,各个选项中,符合题意,故选:D【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质2D解析:D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可【详解】A、 ,不能构成直角三角形,故本选项不符合题意;B、 ,不能构成直角三角形,故本选项不符合题意;C、 ,不能构成直角三角形,故本选项不符合题意;D、 ,能构成直角三角形,故本选项符合题意,故选:D【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小

9、关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断3D解析:D【解析】【分析】根据平行四边形的判定定理逐项判断即可【详解】A、由,得,又,得,得,可得到四边形ABCD是平行四边形,故A选项不符合题意B、由,可得到四边形ABCD是平行四边形,故B选项不符合题意;C、由,可得到四边形ABCD是平行四边形,故C选项不符合题意;D、由,不可得到四边形ABCD是平行四边形,故D选项符合题意故选:D【点睛】本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用4A解析:A【解析】【分析】根据中位数和众数的求解方法,求解即可【详解】解:将这五

10、部电影得票数从小到大排列,处在中间位置的一个数是10,因此中位数是10,这五部电影得票数出现次数最多的是11,共出现2次,因此众数是11,故选:A【点睛】此题考查了中位数和众数的求解,掌握它们的求解方法是解题的关键5D解析:D【分析】先判断三角形的形状,再依据三角形的面积公式求出这个三角形的面积,且依据同一个三角形的面积不变求出斜边上的高【详解】解:三角形三边长分别是6,10,862+82=102该三角形为直角三角形该三角形的面积:682=24斜边上的高:24210=4.8这个三角形最长边上的高是4.8故选:D【点睛】本题考查了勾股定理逆定理以及面积不变原则,解答此题的关键是:先确定出计算三角

11、形的面积需要的线段的长度,再据同一个三角形的面积不变,求出斜边上的高6C解析:C【解析】【分析】由菱形的性质可得ACBD,BAD120,ABBCa,AE,BEa,ABD30,由折叠的性质可得EFBP,BEFPEF,BEEPa,可证BEF是等边三角形,GDH是等边三角形,四边形AEPG是平行四边形,可得AGEPa,即可求DG的长,由面积和差可求解【详解】解:如图,连接AC,四边形ABCD是菱形,ABC60,AE2BE,ACBD,BAD120,ABBCa,AE,BEa,ABD30,ACABBCa,BDa,将菱形ABCD沿EF,GH折叠,EFBP,BEFPEF,BEEPa,EFAC,BEBF,BEF

12、是等边三角形,BEF60PEF,BEPBAD120,EHAD,同理可得:GDH是等边三角形,GPAB,四边形AEPG是平行四边形,AGEPa,DGa,六边形AEFCHG面积S菱形ABCDSBEFSGDHaa(a)2(a)2a2,故选:C【点睛】本题考查了翻折变换,菱形的性质,平行四边形的判定和性质,等边三角形的性质判定等知识,求出DG的长是本题的关键7B解析:B【解析】【分析】求出四边形PECF是矩形,根据矩形的性质得出EF=CP,根据垂线段最短得出CPAB时,CP最短,根据三角形的面积公式求出此时CP值即可【详解】解:连接CP,PEAC,PFBC,ACB=90,PEC=ACB=PFC=90,

13、四边形PECF是矩形,EF=CP,当CPAB时,CP最小,即EF最小,在RtABC中,C=90,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:ACBC=ABCP,CP=,即EF的最小值是=2.4,故选:B【点睛】本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键8A解析:A【分析】设点A2,A3,A4,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题【详解】解:在直线,设,则有,又,都是等腰直角三角形,将点坐标依次代入直线解析式得到:,又,故选:A【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边

14、上高等于斜边长一半,解题的关键是找出规律二、填空题9【解析】【分析】根据二次根式成立的条件可直接进行求解【详解】解:由题意得:,解得:;故答案为【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键10A解析:6【解析】【分析】根据菱形的性质得到AC=8,根据菱形的面积等于两条对角线乘积的一半,即可求解【详解】解:四边形ABCD为菱形;AC=2OA=8,,BD=6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种11A解析:150【解析】【分析】根据坡比的定义,得到AC和BC的关

15、系,利用勾股定理求出AB和AC的关系,从而求解【详解】如图,在中,由题意可知,米,故答案为:150【点睛】本题考查了坡度坡比的定义,利用勾股定理解直角三角形,解题的关键是掌握坡比的定义12S1=S2【分析】由矩形的性质找出,结合对边互相平行即可证出四边形和四边形都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果【详解】解:四边形为矩形,又,四边形和四边形都是矩形,四边形为矩形,四边形和四边形也是矩形,故答案为:【点睛】本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键13【分析】根据函数的概念:函数中的每个值,变量按照一定的法则有一个确定的值与之对应,解答即可【详解

16、】解:设挂重为,则弹簧伸长为,挂重后弹簧长度与挂重之间的函数关系式是:故答案为:【点睛】本题考查了根据实际问题列一次函数关系式的问题,解题关键在于根据题意列出等式,然后再变形为要求的形式14E解析:【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据EFDGFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可【详解】延长EF和BC,交于点G矩形ABCD中,B的角平分线BE与AD交于点E,ABE=AEB=45,AB=AE=9,直角三角形ABE中,BE=9,又BED的角平分线EF与D

17、C交于点F,BEG=DEFADBC,G=DEF,BEG=G,BG=BE=9由G=DEF,EFD=GFC,可得EFDGFC,.设CG=x,DE=2x,则AD=9+2x=BCBG=BC+CG,9=9+2x+x,解得x=3-3,BC=9+2(3-3)=6+3故答案为6+3考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质15【分析】先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标【详解】当时,四边形是正方形当时,四边形是解析: 【分析】先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据

18、此求得的纵坐标【详解】当时,四边形是正方形当时,四边形是正方形,同理可得:;点的坐标为,故答案为:【点睛】本题考查了一次函数的性质,正方形性质,找到点坐标的规律是解题的关键164【分析】由题可知CD=3,由折叠的性质可知AF=FD,设,则,在Rt中利用勾股定理列方程,即可求得答案【详解】D为BC中点,BC=6,由折叠可知AF=DF,设,AC=9,解析:4【分析】由题可知CD=3,由折叠的性质可知AF=FD,设,则,在Rt中利用勾股定理列方程,即可求得答案【详解】D为BC中点,BC=6,由折叠可知AF=DF,设,AC=9,,又 在Rt中,,即:解得:,则CF=故填:4【点睛】本题考查轴对称的性质

19、,勾股定理,解题关键是熟练掌握轴对称的性质和勾股定理三、解答题17(1);(2)【分析】(1)根据二次根式的四则运算法则求解即可;(2)根据完全平方公式和平方差公式,对式子进行求解【详解】解:(1)(2)【点睛】此题考查了二次根式的四解析:(1);(2)【分析】(1)根据二次根式的四则运算法则求解即可;(2)根据完全平方公式和平方差公式,对式子进行求解【详解】解:(1)(2)【点睛】此题考查了二次根式的四则运算,涉及了平方差公式和完全平方公式,解题的关键是掌握二次根式的性质以及运算法则18AC=4.2尺【分析】根据题意画出图形,根据已知用AC表示的AB长,然后根据勾股定理,列出AC的方程,解方

20、程即可【详解】解:ACB90,AC+AB10尺,AB=10-AC,解析:AC=4.2尺【分析】根据题意画出图形,根据已知用AC表示的AB长,然后根据勾股定理,列出AC的方程,解方程即可【详解】解:ACB90,AC+AB10尺,AB=10-AC,BC=4尺,在RtABC中,根据勾股定理,即解得AC=4.2尺【点睛】本题考查勾股定理的应用,掌握勾股定理的应用条件与解题方法是解题关键19(1)ABC是直角三角形理由见解析;(2)【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)ABC是直角三角形理解析:(1)ABC是直角三角形理由见解

21、析;(2)【解析】【分析】(1)根据勾股定理和勾股定理的逆定理可直接判断;(2)根据三角形的面积公式可求解.【详解】解:(1)ABC是直角三角形理由如下:由题意可得,AB,BC,AC,AB2+BC2AC2,B90,ABC是直角三角形;(2)设AC边上的高为hSABCAChABBC,h【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解.20(1)见解析;(2)24【分析】(1)证,则,得四边形是平行四边形,再由,即可得出结论;(2)由菱形的性质得,则,再由勾股定理得出方程:,解方程即可【详解】(1)证明:四边形是平行解析:(1)见解析;(2)24【分析】

22、(1)证,则,得四边形是平行四边形,再由,即可得出结论;(2)由菱形的性质得,则,再由勾股定理得出方程:,解方程即可【详解】(1)证明:四边形是平行四边形,的平分线交于点,四边形是平行四边形,又,平行四边形是菱形;(2)解:由(1)得:四边形是菱形,在中,由勾股定理得:,即,解得:或,当时,则,;当时,则,;菱形的面积【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键21(1) 1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简

23、,得到的关系,再对解析:(1) 1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析【解析】【分析】(1)根据所给的例子,可得出平衡数的求法,由此可得出答案;(2)对式子进行化简,得到的关系,再对进行分情况讨论求解即可【详解】解:(1)根据题意可得:,解得,故答案为,(2), , , 当均为有理数时,则有 ,解得:,当时,所以不是关于1的平衡数当中一个为有理数,另一个为无理数时,而此时为无理数,故,所以不是关于1的平衡数 当均为无理数时,当时,联立,解得,存在,使得是关于1的平衡数,当且时,不是关于1的平衡数综上可得:当,时,是关于1的平衡数,否则不是关于1的平衡数【点睛】本题

24、考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,并掌握分类讨论的思想22(1),y甲3840x(6x15);y乙4320x4320(6x15);(2)当购买9台电脑时,到两家商店购买费用相同;当10x15时,到甲商店更合算;当6x8时,到乙商店更合解析:(1),y甲3840x(6x15);y乙4320x4320(6x15);(2)当购买9台电脑时,到两家商店购买费用相同;当10x15时,到甲商店更合算;当6x8时,到乙商店更合算【分析】(1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元);(2)根据(1)的结论列方程或不等式解答即可【详解】解

25、:(1)由题意可得:y甲48000.8x3840x(6x15);y乙48000.9(x1)4320x4320(6x15);(2)当3840x4320x4320时,解得x9,即当购买9台电脑时,到两家商店购买费用相同;当3840x4320x4320时,解得x9,即当10x15时,到甲商店更合算;当3840x4320x4320时,解得x9,即当6x8时,到乙商店更合算【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键23(1)见解析;(2);(3)8或或6【分析】(1)连结,证明,得到相等的角,再由平行线的性质证

26、明,从而得,由菱形的定义判定四边形是菱形;(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的解析:(1)见解析;(2);(3)8或或6【分析】(1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形;(2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式;(3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长【详解】解:(1)证明:如图1,连结,即;四边形是平行四边形,四边形是菱形(2)如图2,连结,交

27、于点,作于点,则,由(1)得,四边形是菱形,由,且,得,解得;,由,且,得,点在边上且不与点、重合,关于的函数解析式为,(3)如图3,且点在的延长线上,即等腰三角形的底边长为8;如图4,作于点,于点,则,由(2)得,即等腰三角形的底边长为;如图5,点与点重合,连结,即,等腰三角形的底边长为6综上所述,以为腰的等腰三角形的底边长为8或或6,故答案为:8或或6【点睛】此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解24(1);(2)点P的坐标为(,)或(,);(3

28、)的最小值为;点N的坐标为(,)【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C的坐标,然后求出直线解析:(1);(2)点P的坐标为(,)或(,);(3)的最小值为;点N的坐标为(,)【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C的坐标,然后求出直线AC的解析式,由,得到,再分别求出AC和AP的长度,即可求出点P的坐标;(3)根据题意,为定值,在图中找出一点,使得,即点、N、C三点共线时,使得有最小值,此时求出,即可得到答案【详解】解:(1)设直线AB为,把点、,代入,则,解得:,;(2)线段,且点C在y轴负

29、半轴上,点C的坐标为(0,4),点A为(4,0),直线AC的解析式为:;点B到直线AC的距离就是ABC和ABP的高,ABC和ABP的高相同,点P在直线AC上,则设点P为(x,x4),或,点P的坐标为(,)或(,);(3)根据题意,点B与点M的水平距离为,在点N的右边水平距离为处作直线,如图:令点为(11,2),此时有,当点、N、C三点共线时,使得有最小值,最小值为:;点(11,2),点C为(0,4),直线的解析式为:,有最小值为:;点N的横坐标为:,点N的纵坐标为:,点N的坐标为:(,)【点睛】本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌

30、握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题25(1);(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s【分析】(1)由勾股定理可求解;由直角三角形的性质可求解;(2)分两种情况讨论,由QM的长度为10,列解析:(1);(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s【分析】(1)由勾股定理可求解;由直角三角形的性质可求解;(2)分两种情况讨论,由QM的长度为10,列出方程可求解;(3)分两种情况讨论,由面积公式可求解;(4)分两种情况讨论,由含30角的直角三角形三边的比值可求解【详解】解:(1)ACB=90

31、,B30,AB20,AC=10,BC=;PQAB,BQP=90,B=30,PQ=,由题意得:BP=2t,PQ=t,故答案为:t;(2)在RtPQB中,BQ=3t,当点M与点Q相遇,20=AM+BQ=4t+3t,t=,当0t时,MQ=AB-AM-BQ,20-4t-3t=10,t=,当t=5时,MQ=AM+BQ-AB,4t+3t-20=10,t=,综上所述:当QM的长度为10时,t的值为或;(3)当0t时,S=PQMQ=t(20-7t)=-t2+20t;当t5时,如图,四边形PQMN是矩形,PN=QM=7t-20,PQ=t,B=30,MEBEBM=12,BM=20-4t,ME=,S=;(4)如图,若NQAC,NQBC,B=MQN=30,MNNQMQ=12,MQ=20-7t,MN=PQ=,t=2,如图,若NQBC,NQAC,A=BQN=90-B=60,PQN=90-BQN=30,PNNQPQ=12,PN=MQ=7t-20,PQ=,t=,综上所述:当t=2s或s时,过点Q和点N的直线垂直于RtABC的一边【点睛】本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服