收藏 分销(赏)

八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc

上传人:精*** 文档编号:1849613 上传时间:2024-05-10 格式:DOC 页数:28 大小:915.04KB 下载积分:10 金币
下载 相关 举报
八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc_第1页
第1页 / 共28页
八年级下册数学义乌数学期末试卷测试卷(含答案解析).doc_第2页
第2页 / 共28页


点击查看更多>>
资源描述
八年级下册数学义乌数学期末试卷测试卷(含答案解析) 一、选择题 1.要使式子﹣有意义,则x的值可以为( ) A.﹣6 B.0 C.2 D.π 2.下列各组数据能组成直角三角形的一组是( ) A.,, B.,, C.,, D.,, 3.如图,在四边形中,对角线和相交于点,下列条件不能判断四边形是平行四边形的是( ) A., B., C., D., 4.为迎接建党一百周年,某班开展“我最想看的红色电影”投票活动,参选的五部电影的得票数分别是9,10,11,11,8,则这组得票数据的中位数,众数分别是(  ) A.10,11 B.11,10 C.11,11 D.10.5,11 5.三角形三边长分别是6,10,8,则它的最长边上的高为( ) A.6 B.10 C.8 D.4.8 6.如图,菱形纸片ABCD的边长为a,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P,若AE=2BE,则六边形AEFCHG面积的是( ) A.a2 B.a2 C.a2 D.a2 7.如图,在中,,,,点为边上任意一点过点分别作于点,于点,则线段的最小值是( ) A.2 B.2.4 C.3 D.4 8.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是( ) A. B. C. D. 二、填空题 9.二次根式中字母x的取值范围是__________. 10.如图,菱形的对角线,相交于点,已知,菱形的面积为24,则的长为______. 11.如图,一名滑雪运动员沿着坡比为的滑道,从A滑行至B,已知米,则这名滑雪运动员的高度下降了_______米. 12.如图,点在矩形的对角线上,且不与点重合,过点分别作边的平行线,交两组对边于点和.四边形和四边形都是矩形并且面积分别为S1,S2,则S1,S2之间的关系为__________. 13.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长cm,写出挂重后的弹簧长度y(cm)与挂重 x(kg)之间的函数关系式并标明 x 的取值范围___________. 14.在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=___________.(结果保留根号) 15.将正方形,,按如图所示方式放置,点,,,…和点,,,…分别在直线和轴上,则点的坐标是______,的纵坐标是______. 16.如图,在Rt△ACB中,∠ACB=90°,BC=6,AC=9.折叠△ACB,使点A与BC的中点D重合,折痕交AB于E,交AC于点F,则CF=___. 三、解答题 17.计算 (1) (2) 18.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系,“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,∠ACB=90°,AC+AB=10尺,BC=4尺,求AC的长. 19.如图,正方形网格中的△ABC,若小方格边长为1 (1)判断△ABC是什么形状?并说明理由. (2)求AC边上的高. 20.如图,在平行四边形ABCD中,∠ABC的平分线BE交AD于点E,点F是BC边上的一点,且BF=AB,连接EF. (1)求证:四边形ABFE是菱形; (2)连接AF,交BE于点O,若AB=5,BE+AF=14,求菱形ABFE的面积. 21.我们规定,若a+b=2,则称a与b是关于1的平衡数. (1)若3与是关于1的平衡数,5-与是关于1的平衡数,求,的值; (2)若(m+)×(1-)=-2n+3(-1),判断m+与5n-是否是关于1的平衡数,并说明理由. 22.某学校欲购置一批标价为4800元的某种型号电脑,需求数量在6至15台之间.经与两个专卖店商谈,优惠方法如下: 甲店:购买电脑打八折; 乙店:先赠一台电脑,其余电脑打九折优惠. 设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元). (1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式; (2)对x的取值情况进行分析,说明这所学校购买哪家电脑更合算? 23.已知:如图,平行四边形ABCD中,AB=5,BD=8,点E、F分别在边BC、CD上(点E、F与平行四边形ABCD的顶点不重合),CE=CF,AE=AF. (1)求证:四边形ABCD是菱形; (2)设BE=x,AF=y,求y关于x的函数解析式,并写出定义域; (3)如果AE=5,点P在直线AF上,△ABP是以AB为腰的等腰三角形,那么△ABP的底边长为    .(请将答案直接填写在空格内) 24.如图,已知点、,线段且点C在y轴负半轴上,连接. (1)如图1,求直线的解析式; (2)如图1,点P是直线上一点,若,求满足条件的点P坐标; (3)如图2,点M为直线上一点,将点M水平向右平移6个单位至点N,连接、、,求的最小值及此时点N的坐标. 25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=20.点P从点B出发,以每秒2个单位长度的速度沿BC向终点C运动,同时点M从点A出发,以每秒4个单位的速度沿AB向终点B运动,过点P作PQ⊥AB于点Q,连结PQ,以PQ、MQ为邻边作矩形PQMN,当点P运动到终点时,整个运动停止,设矩形PQMN与Rt△ABC重叠部分图形的面积为S(S>0),点P的运动时间为t秒. (1)①BC的长为   ; ②用含t的代数式表示线段PQ的长为   ; (2)当QM的长度为10时,求t的值; (3)求S与t的函数关系式; (4)当过点Q和点N的直线垂直于Rt△ABC的一边时,直接写出t的值. 【参考答案】 一、选择题 1.D 解析:D 【分析】 根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】 解:由题意得:x﹣3≥0, 解得:x≥3, 各个选项中,π符合题意, 故选:D. 【点睛】 此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质. 2.D 解析:D 【分析】 根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可. 【详解】 A、 ,不能构成直角三角形,故本选项不符合题意; B、 ,不能构成直角三角形,故本选项不符合题意; C、 ,不能构成直角三角形,故本选项不符合题意; D、 ,能构成直角三角形,故本选项符合题意, 故选:D. 【点睛】 本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 3.D 解析:D 【解析】 【分析】 根据平行四边形的判定定理逐项判断即可. 【详解】 A、由,得,又,得,得,可得到四边形ABCD是平行四边形,故A选项不符合题意 B、由,,可得到四边形ABCD是平行四边形,故B选项不符合题意; C、由,,可得到四边形ABCD是平行四边形,故C选项不符合题意; D、由,,不可得到四边形ABCD是平行四边形,故D选项符合题意. 故选:D. 【点睛】 本题主要考查了平行四边形的判定,解题的关键是理解并掌握平行四边形的判定定理,并会灵活运用. 4.A 解析:A 【解析】 【分析】 根据中位数和众数的求解方法,求解即可. 【详解】 解:将这五部电影得票数从小到大排列,处在中间位置的一个数是10,因此中位数是10, 这五部电影得票数出现次数最多的是11,共出现2次,因此众数是11, 故选:A. 【点睛】 此题考查了中位数和众数的求解,掌握它们的求解方法是解题的关键. 5.D 解析:D 【分析】 先判断三角形的形状,再依据三角形的面积公式求出这个三角形的面积,且依据同一个三角形的面积不变求出斜边上的高. 【详解】 解:∵三角形三边长分别是6,10,8 ∴62+82=102 ∴该三角形为直角三角形 ∴该三角形的面积:6×8÷2=24 斜边上的高:24×2÷10=4.8 ∴这个三角形最长边上的高是4.8. 故选:D. 【点睛】 本题考查了勾股定理逆定理以及面积不变原则,解答此题的关键是:先确定出计算三角形的面积需要的线段的长度,再据同一个三角形的面积不变,求出斜边上的高. 6.C 解析:C 【解析】 【分析】 由菱形的性质可得AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°,由折叠的性质可得EF⊥BP,∠BEF=∠PEF,BE=EP=a,可证△BEF是等边三角形,△GDH是等边三角形,四边形AEPG是平行四边形,可得AG=EP=a,即可求DG的长,由面积和差可求解. 【详解】 解:如图,连接AC, ∵四边形ABCD是菱形,∠ABC=60°,AE=2BE, ∴AC⊥BD,∠BAD=120°,AB=BC=a,AE=,BE=a,∠ABD=30°, ∴AC=AB=BC=a,BD=a, ∵将菱形ABCD沿EF,GH折叠, ∴EF⊥BP,∠BEF=∠PEF,BE=EP=a, ∴EF∥AC, ∴, ∴BE=BF, ∴△BEF是等边三角形, ∴∠BEF=60°=∠PEF, ∴∠BEP=∠BAD=120°, ∴EH∥AD, 同理可得:△GDH是等边三角形,GP∥AB, ∴四边形AEPG是平行四边形, ∴AG=EP=a, ∴DG=a, ∴六边形AEFCHG面积=S菱形ABCD﹣S△BEF﹣S△GDH=•a•a﹣×(a)2﹣×(a)2=a2, 故选:C. 【点睛】 本题考查了翻折变换,菱形的性质,平行四边形的判定和性质,等边三角形的性质判定等知识,求出DG的长是本题的关键. 7.B 解析:B 【解析】 【分析】 求出四边形PECF是矩形,根据矩形的性质得出EF=CP,根据垂线段最短得出CP⊥AB时,CP最短,根据三角形的面积公式求出此时CP值即可. 【详解】 解:连接CP, ∵PE⊥AC,PF⊥BC,∠ACB=90°, ∴∠PEC=∠ACB=∠PFC=90°, ∴四边形PECF是矩形, ∴EF=CP, 当CP⊥AB时,CP最小,即EF最小, 在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5, 由三角形面积公式得:AC×BC=AB×CP, CP=, 即EF的最小值是=2.4, 故选:B. 【点睛】 本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键. 8.A 解析:A 【分析】 设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题. 【详解】 解:在直线, , , 设,,,,,,,,, 则有,,,, 又△,△,△,,都是等腰直角三角形, ,,,. 将点坐标依次代入直线解析式得到: ,,,,, 又, ,,,,, 故选:A. 【点睛】 此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律. 二、填空题 9. 【解析】 【分析】 根据二次根式成立的条件可直接进行求解. 【详解】 解:由题意得: ,解得:; 故答案为. 【点睛】 本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键. 10.A 解析:6 【解析】 【分析】 根据菱形的性质得到AC=8,根据菱形的面积等于两条对角线乘积的一半,即可求解. 【详解】 解:∵四边形ABCD为菱形; ∴AC=2OA=8,, ∴, ∴BD=6, 故答案为:6 【点睛】 本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种. 11.A 解析:150 【解析】 【分析】 根据坡比的定义,得到AC和BC的关系,利用勾股定理求出AB和AC的关系,从而求解. 【详解】 如图,在中, 由题意可知, ∴, ∴, ∴米, 故答案为:150. 【点睛】 本题考查了坡度坡比的定义,利用勾股定理解直角三角形,解题的关键是掌握坡比的定义. 12.S1=S2 【分析】 由矩形的性质找出,结合对边互相平行即可证出四边形和四边形都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果. 【详解】 解:∵四边形为矩形, ∴. 又∵,, ∴四边形和四边形都是矩形. ∵,,四边形为矩形, ∴四边形和四边形也是矩形, ∴,,, ∴, 故答案为:. 【点睛】 本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键. 13. 【分析】 根据函数的概念:函数中的每个值,变量按照一定的法则有一个确定的值与之对应,解答即可. 【详解】 解:设挂重为,则弹簧伸长为, 挂重后弹簧长度与挂重之间的函数关系式是:. 故答案为:. 【点睛】 本题考查了根据实际问题列一次函数关系式的问题,解题关键在于根据题意列出等式,然后再变形为要求的形式. 14.E 解析: 【分析】 先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可. 【详解】 延长EF和BC,交于点G. ∵矩形ABCD中,∠B的角平分线BE与AD交于点E, ∴∠ABE=∠AEB=45°, ∴AB=AE=9, ∴直角三角形ABE中,BE==9, 又∵∠BED的角平分线EF与DC交于点F, ∴∠BEG=∠DEF. ∵AD∥BC, ∴∠G=∠DEF, ∴∠BEG=∠G, ∴BG=BE=9. 由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC, ∴. 设CG=x,DE=2x,则AD=9+2x=BC. ∵BG=BC+CG, ∴9=9+2x+x,解得x=3-3, ∴BC=9+2(3-3)=6+3. 故答案为6+3. 考点:矩形的性质;等腰三角形的判定;相似三角形的判定与性质. 15.【分析】 先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标 【详解】 当时, 四边形是正方形 当时, 四边形是 解析: 【分析】 先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标 【详解】 当时, 四边形是正方形 当时, 四边形是正方形 , 同理可得:; …… 点的坐标为 , 故答案为:①② 【点睛】 本题考查了一次函数的性质,正方形性质,找到点坐标的规律是解题的关键. 16.4 【分析】 由题可知CD=3,由折叠的性质可知AF=FD,设,则,在Rt中利用勾股定理列方程,即可求得答案. 【详解】 ∵D为BC中点,BC=6, ∴, 由折叠可知AF=DF, 设, ∵AC=9, 解析:4 【分析】 由题可知CD=3,由折叠的性质可知AF=FD,设,则,在Rt中利用勾股定理列方程,即可求得答案. 【详解】 ∵D为BC中点,BC=6, ∴, 由折叠可知AF=DF, 设, ∵AC=9, ∴, 又∵ ∴在Rt中, , 即: 解得:, 则CF= 故填:4. 【点睛】 本题考查轴对称的性质,勾股定理,解题关键是熟练掌握轴对称的性质和勾股定理. 三、解答题 17.(1);(2) 【分析】 (1)根据二次根式的四则运算法则求解即可; (2)根据完全平方公式和平方差公式,对式子进行求解. 【详解】 解:(1) (2) 【点睛】 此题考查了二次根式的四 解析:(1);(2) 【分析】 (1)根据二次根式的四则运算法则求解即可; (2)根据完全平方公式和平方差公式,对式子进行求解. 【详解】 解:(1) (2) 【点睛】 此题考查了二次根式的四则运算,涉及了平方差公式和完全平方公式,解题的关键是掌握二次根式的性质以及运算法则. 18.AC=4.2尺. 【分析】 根据题意画出图形,根据已知用AC表示的AB长,然后根据勾股定理,列出AC的方程,解方程即可. 【详解】 解:∵∠ACB=90°,AC+AB=10尺, ∴AB=10-AC, 解析:AC=4.2尺. 【分析】 根据题意画出图形,根据已知用AC表示的AB长,然后根据勾股定理,列出AC的方程,解方程即可. 【详解】 解:∵∠ACB=90°,AC+AB=10尺, ∴AB=10-AC, ∵BC=4尺, 在Rt△ABC中,根据勾股定理,,即 解得AC=4.2尺. 【点睛】 本题考查勾股定理的应用,掌握勾股定理的应用条件与解题方法是解题关键. 19.(1)△ABC是直角三角形.理由见解析;(2) 【解析】 【分析】 (1)根据勾股定理和勾股定理的逆定理可直接判断; (2)根据三角形的面积公式可求解. 【详解】 解:(1)△ABC是直角三角形.理 解析:(1)△ABC是直角三角形.理由见解析;(2) 【解析】 【分析】 (1)根据勾股定理和勾股定理的逆定理可直接判断; (2)根据三角形的面积公式可求解. 【详解】 解:(1)△ABC是直角三角形.理由如下: 由题意可得,AB=,BC=, AC=, ∴AB2+BC2=AC2, ∴∠B=90°, ∴△ABC是直角三角形; (2)设AC边上的高为h. ∵S△ABC=AC•h=AB•BC, ∴h=. 【点睛】 本题主要考查了勾股定理和勾股定理的逆定理,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)见解析;(2)24 【分析】 (1)证,则,,得四边形是平行四边形,再由,即可得出结论; (2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可. 【详解】 (1)证明:四边形是平行 解析:(1)见解析;(2)24 【分析】 (1)证,则,,得四边形是平行四边形,再由,即可得出结论; (2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可. 【详解】 (1)证明:四边形是平行四边形, , , 的平分线交于点, , , , , ,, 四边形是平行四边形, 又, 平行四边形是菱形; (2)解:由(1)得:四边形是菱形, ,,, , , 在中,由勾股定理得:, 即, 解得:或, 当时,,则,; 当时,,则,; 菱形的面积. 【点睛】 本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键. 21.(1) -1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析 【解析】 【分析】 (1)根据所给的例子,可得出平衡数的求法,由此可得出答案; (2)对式子进行化简,得到的关系,再对 解析:(1) -1,;(2)当,时,是关于1的平衡数,否则不是关于1的平衡数;见解析 【解析】 【分析】 (1)根据所给的例子,可得出平衡数的求法,由此可得出答案; (2)对式子进行化简,得到的关系,再对进行分情况讨论求解即可. 【详解】 解:(1)根据题意可得:, 解得, 故答案为, (2), ∴ , ∴ , ∴ ①当均为有理数时, 则有 , 解得:, 当时, 所以不是关于1的平衡数 ②当中一个为有理数,另一个为无理数时, ,而此时为无理数,故, 所以不是关于1的平衡数 ③当均为无理数时,当时,联立,解得 , 存在,使得是关于1的平衡数, 当且时,不是关于1的平衡数 综上可得:当,时,是关于1的平衡数,否则不是关于1的平衡数. 【点睛】 本题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,并掌握分类讨论的思想. 22.(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合 解析:(1),y甲=3840x(6≤x≤15);y乙=4320x﹣4320(6≤x≤15);(2)当购买9台电脑时,到两家商店购买费用相同;当10≤x≤15时,到甲商店更合算;当6≤x≤8时,到乙商店更合算 【分析】 (1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元); (2)根据(1)的结论列方程或不等式解答即可. 【详解】 解:(1)由题意可得:y甲=4800×0.8x=3840x(6≤x≤15); y乙=4800×0.9(x﹣1)=4320x﹣4320(6≤x≤15); (2)当3840x=4320x﹣4320时, 解得x=9, 即当购买9台电脑时,到两家商店购买费用相同; 当3840x<4320x﹣4320时, 解得x>9, 即当10≤x≤15时,到甲商店更合算; 当3840x>4320x﹣4320时, 解得x<9, 即当6≤x≤8时,到乙商店更合算. 【点睛】 本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键. 23.(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的 解析:(1)见解析;(2);(3)8或或6 【分析】 (1)连结,证明,得到相等的角,再由平行线的性质证明,从而得,由菱形的定义判定四边形是菱形; (2)连结,交于点,作于点,由菱形的面积及边长求出菱形的高,再求的长,由勾股定理列出关于、的等式,整理得到关于的函数解析式; (3)以为腰的等腰三角形分三种情况,其中有两种情况是等腰三角形与或全等,另一种情况可由(2)中求得的菱形的高求出的长,再求等腰三角形的底边长. 【详解】 解:(1)证明:如图1,连结, ,,, , , 即; 四边形是平行四边形, , , , , 四边形是菱形 (2)如图2,连结,交于点,作于点,则, 由(1)得,四边形是菱形, , , ,, , , , 由,且,得, 解得; , , 由,且,得, 点在边上且不与点、重合, , 关于的函数解析式为, (3)如图3,,且点在的延长线上, ,, , , , , , , , , , , , ,, , , 即等腰三角形的底边长为8; 如图4,,作于点,于点,则, , , , , , 由(2)得,, , , 即等腰三角形的底边长为; 如图5,,点与点重合,连结, ,,, , , 即, 等腰三角形的底边长为6. 综上所述,以为腰的等腰三角形的底边长为8或或6, 故答案为:8或或6. 【点睛】 此题重点考查菱形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理、求与几何图形有关的函数关系式等知识与方法,在解第(3)题时,需要进行分类讨论,求出所有符合条件的值,以免丢解. 24.(1);(2)点P的坐标为(,)或(,);(3)的最小值为;点N的坐标为(,). 【解析】 【分析】 (1)直接利用待定系数法,即可求出直线的解析式; (2)根据题意,先求出点C的坐标,然后求出直线 解析:(1);(2)点P的坐标为(,)或(,);(3)的最小值为;点N的坐标为(,). 【解析】 【分析】 (1)直接利用待定系数法,即可求出直线的解析式; (2)根据题意,先求出点C的坐标,然后求出直线AC的解析式,由,得到,再分别求出AC和AP的长度,即可求出点P的坐标; (3)根据题意,为定值,在图中找出一点,使得,即点、N、C三点共线时,使得有最小值,此时求出,即可得到答案. 【详解】 解:(1)设直线AB为, 把点、,代入,则 ,解得:, ∴; (2)∵线段,且点C在y轴负半轴上, ∴点C的坐标为(0,4), ∵点A为(4,0), ∴直线AC的解析式为:; ∵点B到直线AC的距离就是△ABC和△ABP的高, ∴△ABC和△ABP的高相同, ∵, ∴, ∴, ∵, ∴, ∵点P在直线AC上,则设点P为(x,x4), ∴, ∴, ∴或, ∴点P的坐标为(,)或(,); (3)根据题意,∵点B与点M的水平距离为, ∴在点N的右边水平距离为处作直线,如图: 令点为(11,2),此时有, ∵, ∴, ∴当点、N、C三点共线时,使得有最小值, 最小值为:; ∵点(11,2),点C为(0,4), ∴直线的解析式为:, , ∴有最小值为:; ∵点N的横坐标为:, ∴点N的纵坐标为:, ∴点N的坐标为:(,). 【点睛】 本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题. 25.(1)①;②;(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s. 【分析】 (1)①由勾股定理可求解; ②由直角三角形的性质可求解; (2)分两种情况讨论,由QM的长度为10,列 解析:(1)①;②;(2)t的值为或;(3)S=-t2+20t或S=;(4)t=2s或s. 【分析】 (1)①由勾股定理可求解; ②由直角三角形的性质可求解; (2)分两种情况讨论,由QM的长度为10,列出方程可求解; (3)分两种情况讨论,由面积公式可求解; (4)分两种情况讨论,由含30°角的直角三角形三边的比值可求解. 【详解】 解:(1)①∵∠ACB=90°,∠B=30°,AB=20, ∴AC==10, ∴BC=; ②∵PQ⊥AB, ∴∠BQP=90°, ∵∠B=30°, ∴PQ=, 由题意得:BP=2t, ∴PQ=t, 故答案为:t; (2)在Rt△PQB中, BQ==3t, 当点M与点Q相遇,20=AM+BQ=4t+3t, ∴t=, 当0<t<时,MQ=AB-AM-BQ, ∴20-4t-3t=10, ∴t=, 当<t≤=5时,MQ=AM+BQ-AB, ∴4t+3t-20=10, ∴t=, 综上所述:当QM的长度为10时,t的值为或; (3)当0<t<时,S=PQ·MQ=t×(20-7t)=-t2+20t; 当<t≤5时,如图, ∵四边形PQMN是矩形, ∴PN=QM=7t-20,PQ=t, ∴∠B=30°, ∴ME∶BE∶BM=1∶2∶, ∵BM=20-4t, ∴ME=, ∴S==; (4)如图,若NQ⊥AC, ∴NQ∥BC, ∴∠B=∠MQN=30°, ∵MN∶NQ∶MQ=1∶2∶, ∵MQ=20-7t,MN=PQ=, ∴, ∴t=2, 如图,若NQ⊥BC, ∴NQ∥AC, ∴∠A=∠BQN=90°-∠B=60°, ∴∠PQN=90°-∠BQN=30°, ∴PN∶NQ∶PQ=1∶2∶, ∵PN=MQ=7t-20,PQ=, ∴, ∴t=, 综上所述:当t=2s或s时,过点Q和点N的直线垂直于Rt△ABC的一边. 【点睛】 本题考查了矩形的性质,勾股定理,平行线的性质等知识,利用分类讨论思想解决问题是本题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服